

Linear Guideways

www.hiwin.de

HIWIN GmbH

Brücklesbünd 2 D-77654 Offenburg Phone +49 (0) 7 81 9 32 78 - 0 Fax +49 (0) 7 81 9 32 78 - 90 info@hiwin.de www.hiwin.de

All rights reserved. Complete or partial reproduction is not permitted without our permission.

These assembly instructions are protected by copyright. Any reproduction, publication in whole or in part, modification or abridgement requires the written approval of HIWIN GmbH.

Linear Guideways

Contents

Contents

1. 1.1 1.2 1.3	Information about the document Applicability of these assembly instructions Depiction of safety notices Symbols used	4 4 4 4
2.	Safety	5
2.1	Intended use	5
2.2	Exclusion of liability in the event of alterations or improper use	5
2.3	Qualified personnel	5
2.4	General safety information	5
2.5	Safety information for storage of the linear guideways	5
2.7	Further information	6
3.	Product descriptions	6
3.1	Article numbers of the linear guideways	6
2.6	Safety information for transport of the linear guideways	6
3.2	Design and function of the linear guideway	7
4.	Assembly	8
4.1	Assembly of the blocks on the rail	8
4.2	Disassembly of the blocks on the rail	8
4.3	Assembly of the linear guideway	9
4.4	Mounting surface accuracy tolerances	14
4.5	Tightening torques for fixing screws	23
4.6	Calculating the length of rails	23
4.7	Specificity in the assembly of QH, QE and QW blocks	24
4.8	Assembly of jointed rails	25
5.	Maintenance	26
5.1	Cleaning	26
6.	Lubrication	26
6.1	Basic information on lubrication	26
6.2	Lubrication condition at delivery	27
6.3	Selection of a lubricant	27
6.4	Miscibility	28
6.5	Operating conditions Use of greases and oils in centralized lubrication systems	28 28
6.6 6.7	Lubricant pressure	28
6.8	Lubrication connections	28
6.9	Initial lubrication upon commissioning	33
	Relubrication	34
	Recommended lubricants	35
	Lubricant quantities and lubrication intervals	42
	Self-lubricating linear guideway E2	49
7.	Procedures for incidents	50
8.	Disposal	51
9.	Appendix	52
9.1	Maximum speed and acceleration for HIWIN linear guideways	52
9.2	Technical data for blocks	53
9.3	Technical data for rails	65

Linear Guideways

Information about the document

1. Information about the document

These assembly instructions are intended for planners, developers and operators of systems who plan for and install linear guideways as machine elements. They are also intended for persons who perform the following tasks:

- Transportation
- Assembly
- Retrofitting or upgrading
- Setup
- Commissioning
- Operation
- Cleaning
- Maintenance
- Troubleshooting and error elimination
- Shutdown, disassembly and disposal

1.1 Applicability of these assembly instructions

These assembly instructions are applicable to all HIWIN linear guideways.

1.2 Depiction of safety notices

Safety notices are always indicated using a signal word and sometimes also a symbol for the specific risk. In these instructions, the following signal words and risk levels are used:

A DANGER!

Imminent danger!

Non-compliance with the safety notices will result in serious injury or death!

WARNING!

Potentially dangerous situation!

Non-compliance with the safety notices runs the risk of serious injury or death!

CAUTION!

Potentially dangerous situation!

Non-compliance with the safety notices runs the risk of slight to moderate injury!

WARNING!

Potentially dangerous situation!

Non-compliance with the safety notices runs the risk of damage to property or environmental pollution!

1.3 Symbols used

The following symbols are used in these instructions.

Please note: Describes general information and recommendations.

Instructions: Instructions are marked with the checklist symbol. The actions described must be carried out and adhered to in the sequence given.

Linear Guideways

Safety

2. Safety

MARNING!

This chapter serves to ensure the safety of everyone working with linear guideways and those who assemble, install, operate, maintain or disassemble them. Non-compliance with the following information results in dangerous working conditions.

2.1 Intended use

The linear guideway is a linear guidance element that is used inside a machine or an automated system to guide a linear movement.

The linear guideways are designed for installation and operation in horizontal and vertical positions. In the case of vertical assembly, a suitable clamping or braking device must be provided in order to prevent unintended lowering of the load. The linear guideways may only be used for the intended purpose as described.

2.2 Exclusion of liability in the event of alterations or improper use

No alterations may be made to the linear guideways that are not described in these assembly instructions. If it is necessary to alter the design, please contact the manufacturer.

In the event of alterations or improper assembly, installation, commissioning, operation, maintenance or repair, the manufacturer shall assume no liability.

Only original parts from HIWIN may be used as spare parts and accessories. Spare parts and accessories not supplied by HIWIN are not tested for operation with HIWIN linear guideways and may compromise operational safety. The manufacturer shall accept no liability for damage caused as a result of using non-approved spare parts and accessories.

2.3 Qualified personnel

The linear guideways may only be assembled, integrated into higher-level systems, commissioned, operated and maintained by qualified personnel. Qualified personnel are those who:

- have received appropriate technical training
- and
- have received training from the machine operator concerning machine operation and the applicable safety guidelines, and can assess the risks to be expected and
- have read and understood these assembly instructions in their entirety and have access to them at all times.

2.4 General safety information

WARNING!

The following safety notices must be observed. Non-compliance with safety notices may endanger life and limb.

- Before and during all assembly, disassembly or repair work, the higher-level system must be disconnected from the power supply, and you must ensure that the power supply cannot be restored by anyone else. Otherwise, there is a danger of death and injury.
- During assembly and disassembly, the linear guideway must be transported horizontally. If this is not possible, a suitable holding device must be installed to prevent the mounted blocks from coming off the rail.
- For long linear guideways, a hoist may be used for assembly.

2.5 Safety information for storage of the linear guideways

Risk of crushing!

Only remove transportation safety device upon assembly!

If the linear guideway is to be put into storage, it must be kept in its transport packaging. It must be stored in a dry location and protected from impact.

A CAUTION!

Linear Guideways

Safety/product descriptions

2.6 Safety information for transport of the linear guideways

WARNING!

Damage caused by tilting or falling!

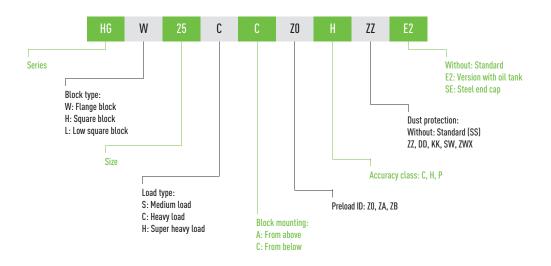
If no transportation safety device is used, the linear guideway may tilt or fall over.

• Before transport, secure the linear guideway to prevent tilting!

For weights of 25 kg or over, suitable hoists of a corresponding size must be used for transportation. Observe the applicable occupational health and safety regulations when handling suspended loads.

When transporting long linear guideways, use support at various locations so that they do not bend. Bending during transport compromises the function and precision of the linear guideways.

2.7 Further information

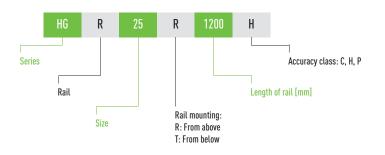

If you have any questions, please contact our sales organisation: Tel.: +49 (0) 781 / 9 32 78-0 Fax: +49 (0) 781 / 9 32 78-90 If you have questions, suggestions or corrections concerning the documentation, please send a fax to the following number: +49 (0) 781 / 9 32 78-90

3. Product descriptions

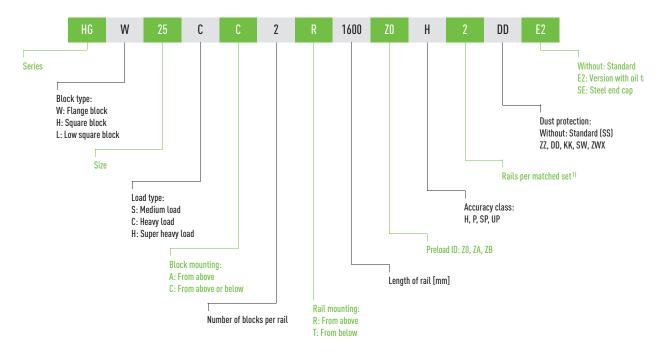
3.1 Article numbers of the linear guideways

3.1.1 Non-assembled type

• Article number of the block



Linear Guideways


Product descriptions

• Article number of the rail

3.1.2 Assembled type

• Article number of the fully assembled linear guideway

Note:

¹⁾ The figure 2 is also a quantity statement, i.e. a part of the article described above consists of a pair of rails. No figures are provided for individual linear guideways.

3.2 Design and function of the linear guideway

A linear guideway essentially consists of rails, blocks and the rolling elements located between the blocks and rails. The rolling elements rotate inside the blocks in a closed circuit. The block is guided along the rails by the rotating rolling elements. This mostly generates rolling friction and hardly any sliding friction. The friction coefficient thus amounts to around a fiftieth of that produced by conventional sliding guides. HIWIN linear guideways are designed so that they can bear loads from all directions.

Assembly

4. Assembly

🔥 DANGER!

Before and during all assembly, disassembly or repair work, the higher-level system must be disconnected from the power supply, and you must ensure that the power supply cannot be restored by anyone else. Otherwise, there is a danger of death and significant danger of injury.

WARNING!

If required, use a suitable hoist for the assembly of linear guideways; lifting heavy loads without using tools may be harmful to health. Observe the applicable occupational health and safety regulations when handling suspended loads.

Linear guideways are either fully assembled or with blocks and rails supplied separately. In order to avoid damaging the linear guideway, the following procedures must be adhered to.

- Only remove transport packaging directly before assembly.
- Only remove the transportation safety device from the block directly before assembly of the rail. Once the transportation safety device has been removed, keep the rail as horizontal as possible, since otherwise the blocks may run on the rail in an uncontrolled manner.
- Linear guideways are high-precision, largely backlash-free guides. The following assembly instructions must be adhered to. Incorrectly installed linear guideways lead to tensions which may cause premature failure of the guides.
- During installation, ensure that dirt does not accumulate on the rail. Chippings and other contaminants can be removed using petroleum, thin oil or white spirit. Paint solvents and cold cleaning solvents damage the linear guideways and should not be used.

4.1 Assembly of the blocks on the rail

- Non-assembled blocks are always supplied with a block insert. The block insert prevents the rolling elements from coming off the block and protects them from dirt.
 - Only remove the block insert once the block has been assembled upon the rail.
- Check the front sides of the rail for formation of burrs. Remove burrs with an oil stone or brass brush.
- Lubricate the end seals before assembly. This will facilitate assembly and reduce the risk of damaging the seal during assembly.
- Place the block in the desired assembly direction at a right angle and flush on the rail, and slide it on to the rail. In doing so, the block insert is automatically ejected. At this moment, do not tilt the block in any circumstance.
- Blocks with medium and high preload require higher force when being slid on to the rail than blocks with light preload. Make sure to take extra care when doing this. Blocks with high preload should preferably be supplied assembled.
- Before commissioning, the blocks should be lubricated as specified in chapter <u>6</u>.

For R-shaped rails (with bored holes to be screwed from above), the following should also be noted:

- The travel of the block on the rail is to be reduced to a minimum as long as the assembly holes have not yet been closed using protective caps, since otherwise the sealing lips of the scraper may also be damaged.
- Blocks with end seals/scrapers should not be slid on to rails that do not have bevels on the cutting edge.
- This particularly applies to blocks whose sealing systems have the following properties:
- Higher preload
- End seals with double-lip
- Multi-part end seals

4.2 Disassembly of the blocks on the rail

 Disassembly occurs in the corresponding reverse order of the assembly. The block must always be slid on to a block insert. This prevents balls from falling out of the block and dirt from entering the block.

Linear Guideways

Assembly

NOTE

Please note:

If the following instructions are not followed, the seals may be damaged and thus may not work properly. If the rail has no bevel or only a very small one, the use of an assembly aid is recommended.

Generally, a length of rail in the appropriate size is used as an assembly aid, with the process carried out as follows:

- An end with a strong bevel/round edge
- An end without bevel
- The block is first assembled on the assembly aid and then on the rail.
- Place the assembly aid and the block without a bevel end flush on the (assembled) rail.

Carefully slide the block over the joint on to the (assembled) rail. In doing so, press the assembly aid against the rail in order to avoid creating a gap.

If no such assembly aid is available, one can be obtained from HIWIN GmbH.

4.3 Assembly of the linear guideway

The specific configuration of the tracks ensures that a linear guideway can bear loads from all directions. The mounting position depends on the requirements of the machine and the loading direction. The precision of the rails is defined by the straightness and evenness of the installation surfaces, since the rail is attached to these while the screws are being tightened. Rails that are not attached to an installation surface may have larger tolerances in terms of straightness.

4.3.1 Identification of the datum plane of rails and blocks

The datum plane of the rail is identified by arrows on the top of the rail. For very short rails, the datum plane is identified by an arrow on the front side of the rail.

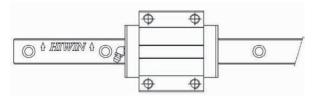


Fig. 4.1 Identification of the datum plane of a rail

The datum plane of the block is the smooth ground lateral surface.

a) Clean the mounting surface

Before beginning assembly, remove all dirt from the mounting surface of the machine. Mounting holes and datum planes must be free of burrs. If necessary, remove burrs using an oil stone.

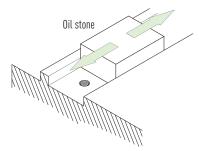
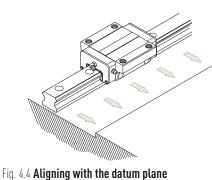


Fig. 4.3 Cleaning the mounting surface

Fig. 4.2 Identification of the datum plane of a short rail



Linear Guideways

Assembly

b) Assembly of the rail

Place the rail carefully on the bed and align it with the datum plane. This ensures that the rail is installed flush on the datum plane. When adjusting the rail, ensure correct thread engagement when inserting a bolt into the mounting hole.

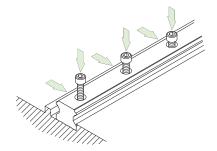


Fig. 4.5 Adjusting the rail on the bed and assembly of the screws

If using push screws, tighten them one after another in order to ensure good contact between the rail and the datum plane.

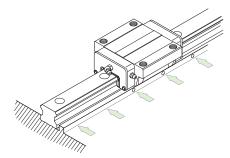


Fig. 4.6 Tightening the push screws

Screw in the retaining bolts in three stages using a torque wrench until the specified torque is reached. A list of the optimum tightening torques for the screws can be found in chapter <u>4.5</u>.

When using a pair of rails, assemble the second rail in the same way as the first.

In this case, the permissible tolerances of the mounting surfaces and assembly deviations of the corresponding series must be adhered to (see chapter <u>4.4</u>, mounting tolerances of the particular series).

Linear Guideways

Assembly

4.3.3 Mounting of bolt caps

Before mounting the bolt caps the linear guideways must be assembled and fixed according to the descriptions earlier in this chapter.

To protect the sealing lips of the seals, mounting holes in the rails (R-rails, mounting from above) must be closed with bolt caps. The sealing lips of the seals need to be protected when the sliding carriage is to be moved over uncovered counterbores of mounting holes.

Depending on the ambient and operating conditions bolt caps made of plastic, steel or brass are used. Plastic bolt caps have to be mounted as described in section 4.3.3.1. The steel and brass bolt caps are pressed into the mounting hole using an assembly tool as described in section 4.3.3.2.

4.3.3.1 Mounting of plastic bolt caps

Step 1: Place the plastic bolt cap centrally on the bore. Ensure parallelism between the top of the rail and the top of the bolt cap.

Fig. 4.7 Positioning of the plastic bolt cap

Step 2: Place an eligible press-in block upright on the cap. With a plastic hammer hit in the bolt cap through a central blow to the press-in block. If the cap is not yet fully pressed in, repeat the procedure until the cap is flush with the rail top. With plastic bolt caps a burr may form during pressing in. Remove this burr.

Fig. 4.8 Pressing in of the plastic bolt cap with the help of a press-in block

Fig. 4.9 Fully assembled plastic bolt cap

Linear Guideways

Assembly

4.3.3.2 Mounting of steel and brass bolt caps

Step 1: Place the steel or brass bolt cap centrally on the bore. Ensure parallelism between the top of the rail and the top of the bolt cap.

Fig. 4.10 Positioning of the steel or brass bolt cap

Step 2: Bring the press-in piston (1) into the upper end position by loosening the screw (2). Push the assembly tool from the front side onto the rail, and position with the press-in piston centered over the bore or the bolt cap.

Fig. 4.11 Positioning of the assembly tool on the rail

Step 3: By tightening the screw (2) extend the press-in piston (1) until it is seated on the cap and a resistance is noticeable when tightening the screw. Before the actual pressing in of the cap, make sure that the cap is not jammed. Then by further tightening the screw (2) press in the bolt cap until the press-in piston sits on the rail. The required torque for pressing the caps is dependent on several factors and can vary greatly. Please note the maximum values specified in <u>Table 4.2</u>.

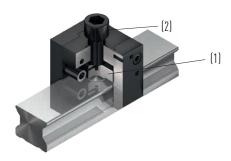


Fig. 4.12 Pressing in of the bolt cap by tightening the screw (2)

Linear Guideways

Assembly

Step 4: After pressing in the bolt cap loosen the screw (2) and shift assembly tool as far as that the pressing process can be verified. If the cap is not yet fully pressed in, repeat the procedure until the cap is flush with the upper side of the rail. In brass bolt caps, a burr may form during the process of pressing. Remove this burr using an oil stone.

Fig. 4.13 Fully assembled bolt cap

Table 4.1 Article numbers for the assembly tool

Series/size	Article number
HG15	5-000914
HG20	5-000915
HG25	5-000916
HG30	5-000917
HG35	5-000918
HG45	5-000919
HG55	5-000920
HG65	5-000921
RG25	12-000309
RG30	12-000310
RG35	12-000311
RG45	12-000312
RG55	12-000313
RG65	12-000314

Table 4.2 Recommended maximum tightening torques for pressing in steel and brass bolt caps

Series/size	Bolt cap		
	Brass	Steel	Max. tightening torque [Nm]
HG15, RG15	5-001344	-	15
HG20, RG20	5-001350	5-001352	20
HG25, RG25	5-001355	5-001357	20
HG30, HG35, RG30, RG35	5-001360	5-001362	20
HG45, RG45	5-001324	5-001327	85
HG55, RG55	5-001330	5-001332	85
HG65, RG65	5-001335	5-001337	110

Linear Guideways

NOTE

4.4 Mounting surface accuracy tolerances

4.4.1 Tolerance of the mounting surface of the rail

Once the precision requirements for the mounting surface have been fulfilled, the high precision and rigidity of the linear guideways can be achieved without problems. In order to ensure quick assembly and smooth movement, HIWIN offers linear guideways with light preload (Z0) which compensate deviations on the mounting surface over a wide area.

Please note:

If the displacement forces of the blocks increase sharply after assembly, tension is very likely present. If this is the case, check the mounting surfaces for contaminants and burrs, as well as the permissible accuracy tolerances.

4.4.1.1 HG and QH series

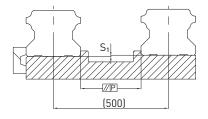


Fig. 4.14 Parallelism of the reference surface P – HG/QH series

Table 4.3 Maximum tolerances for the parallel alignment (P) – HG/QH series

Series/size	Preload class		
	Z0	ZA	ZB
HG/QH_15	25	18	-
HG/QH_20	25	20	18
HG/QH_25	30	22	20
HG/QH_30	40	30	27
HG/QH_35	50	35	30
HG/QH_45	60	40	35
HG_55	70	50	45
HG_65	80	60	55

Unit: µm

Table 4.4 Maximum tolerances for the parallel alignment (P) – HG/QH series

Series/size	Preload class			
	Z0	ZA	ZB	
HG/QH_15	130	85	-	
HG/QH_20	130	85	50	
HG/QH_25	130	85	70	
HG/QH_30	170	110	90	
HG/QH_35	210	150	120	
HG/QH_45	250	170	140	
HG_55	300	210	170	
HG_65	350	250	200	

Unit: µm

Linear Guideways

Mounting tolerances

4.4.1.2 EG and QE series

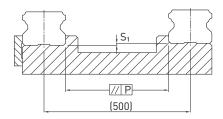


Fig. 4.15 Parallelism of the reference surface P – EG/QE series

Table 4.5 Maximum tolerances for the parallel alignment (P) – EG/QE series

Series/size	Preload class		
	Z0	ZA	ZB
EG/QE_15	25	18	-
EG/QE_20	25	20	18
EG/QE_25	30	22	20
EG/QE_30	40	30	27
EG/QE_35	50	35	30

Unit: µm

Table 4.6 Maximum tolerance for the height of the reference surface (S_1) – EG/QE series

Series/size	Preload class		
	Z0	ZA	ZB
EG/QE_15	130	85	-
EG/QE_20	130	85	50
EG/QE_25	130	85	70
EG/QE_30	170	110	90
EG/QE_35	210	150	120

Unit: µm

4.4.1.3 WE series

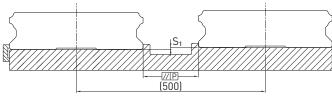


Fig. 4.16 Parallelism of the reference surface P – WE series

Mounting tolerances

Table 4.7 Maximum tolerances for the parallel alignment (P) – WE series

Series/size	Preload class			
	ZO	ZA	ZB	
WE_17	20	15	9	
WE_21	25	18	9	
WE_27	25	20	13	
WE_35	30	22	20	

Unit: µm

Table 4.8 Maximum tolerance for the height of the reference surface (S₁) – WE series

Series/size	Preload class		
	ZO	ZA	ZB
WE_17	65	20	-
WE_21	130	85	45
WE_27	130	85	45
WE_35	130	85	70

Unit: µm

4.4.1.4 MG series

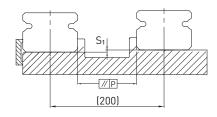


Fig. 4.17 Parallelism of the reference surface P - MG series

Table 4.9 Maximum tolerances for the parallel alignment (P) – MG series

Series/size	Preload class		
	ZF	Z0	Z1
MG_07	3	3	3
MG_09	4	4	3
MG_12	9	9	5
MG_15	10	10	6

Unit: µm

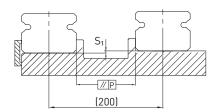
Table 4.10 Maximum tolerance for the height of the reference surface (S₁) – MG series

Series/size	Preload class		
	ZF	ZO	Z1
MG_07	25	25	3
MG_09	35	35	6
MG_12	50	50	12
MG_15	60	60	20

Unit: µm

Linear Guideways

Mounting tolerances


Table 4.11 Requirements for the mounting surface – MG series

Series/size	Required evenness of the mounting surface
MG_07	0.025/200
MG_09	0.035/300
MG_12	0.050/200
MG_15	0.060/200

Unit: mm

Note: The values in <u>Table 4.11</u> are applicable to the preload classes ZF and ZO. For Z1 or if more than one rail is to be mounted on the same surface, the table values must be at least halved.

4.4.1.5 PM series

Fig. 4.18 Parallelism of the reference surface P – PM series

Table 4.12 Maximum tolerances for the parallel alignment (P) – PM series

Series/size	Preload class				
	ZF	ZO	Z1		
PM_05	2	2	2		
PM_09	4	4	3		
PM_12	9	9	5		

Unit: µm

Table 4.13 Maximum tolerance for the height of the reference surface (S₁) – PM series

Series/size	Preload class				
	ZF	ZO	Z1		
PM_05	20	20	2		
PM_09	35	35	6		
PM_12	50	50	12		

Unit: µm

Table 4.14 Requirements for the mounting surface – PM series

Series/size	Required evenness of the mounting surface
PM_05	0.015/200
PM_09	0.035/300
PM_12	0.050/200

Unit: mm

Note: The values in <u>Table 4.14</u> are applicable to the preload classes ZF and ZO. For Z1 or if more than one rail is to be mounted on the same surface, the table values must be at least halved.

Linear Guideways

Mounting tolerances

4.4.1.6 RG and QR series

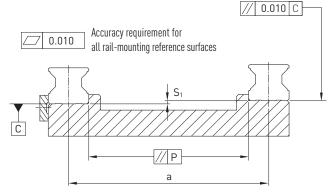


Fig. 4.19 Parallelism of the reference surface P - RG/QR series

• Tolerances for the parallelism of the reference surface (P)

Table 4.15 Maximum tolerances for the parallel alignment (P) – RG/QR series

Series/size	Preload class			
	Z0	ZA	ZB	
RG_15	5	3	3	
RG_20	8	6	4	
RG/QR_25	9	7	5	
RG/QR_30	11	8	6	
RG/QR_35	14	10	7	
RG/QR_45	17	13	9	
RG_55	21	14	11	
RG_65	27	18	14	

Unit: µm

• Tolerances for the height of the reference surface (S₁)

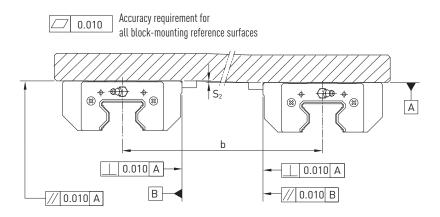
	S1: Max. height tolerance
$S_1 = a \times K$	a: Distance between rails
	K: Coefficient of the height tolerance

Table 4.16 Coefficient of the height tolerance (K) – RG/QR series

Series/size	Preload					
	ZO ZA ZB					
RG_15 - 60/QR_25 - 60	2.2 × 10 ⁻⁴	1.7 × 10 ⁻⁴	1.2 × 10 ⁻⁴			

Height tolerance of the block mounting surface

Due to the high rigidity of the RG series, the following tolerances must be used for the mounting surfaces of the blocks in the parallel use of two or more blocks:


 ${\rm O}$ The height tolerance of the reference surface in the parallel use of two or more blocks (S_2)

$$S_2 = b \times 4.2 \times 10^{-5}$$
 $S_2:$ Max. height tolerance
b: Distance between blocks

Linear Guideways

Mounting tolerances

Fig. 4.20 Maximum height tolerance S₂

- O The height tolerance of the reference surface in the parallel use of two or more blocks (S₃)
- $S_3 = c \times 4.2 \times 10^{-5}$ $S_3:$ Max. height tolerance c: Distance between blocks

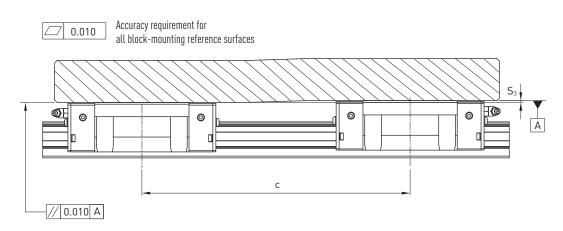


Fig. 4.21 Maximum height tolerance S_3

Linear Guideways

Mounting tolerances

4.4.2 Shoulder heights and fillets

Imprecise shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and the interference with the chamfered part of the rail or block. As long as the recommended shoulder heights and fillets are followed, installation inaccuracies should be eliminated.

4.4.2.1 HG and QH series

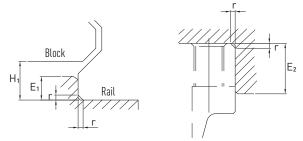


Fig. 4.22 Shoulder heights and fillets – HG/QH series

Table 4.17 Shoulder heights and fillets

Series/ size	Max. radius of fillets r	Shoulder height of the rail E ₁	Shoulder height of the block ${\rm E}_2$	Clearance under block H ₁
HG_15	0.5	3.0	4.0	4.3
QH_15	0.5	3.0	4.0	4.0
HG/QH_20	0.5	3.5	5.0	4.6
HG/QH_25	1.0	5.0	5.0	5.5
HG/QH_30	1.0	5.0	5.0	6.0
HG/QH_35	1.0	6.0	6.0	7.5
HG/QH_45	1.0	8.0	8.0	9.5
HG_55	1.5	10.0	10.0	13.0
HG_65	1.5	10.0	10.0	15.0

Unit: mm

4.4.2.2 EG and QE series

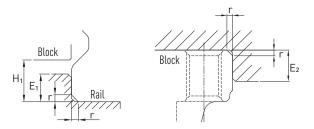
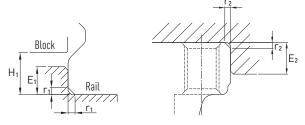


Fig. 4.23 Shoulder heights and fillets – EG/QE series

Linear Guideways


Mounting tolerances

Series/ size	Max. radius of fillets r ₁	Max. radius of fillets r ₂	Shoulder height of the rail E ₁	Shoulder height of the block E ₂	Clearance under block H_1
EG/QE_15	0.5	0.5	2.7	5.0	4.5
EG/QE_20	0.5	0.5	5.0	7.0	6.0
EG/QE_25	1.0	1.0	5.0	7.5	7.0
EG/QE_30	1.0	1.0	7.0	7.0	10.0
EG_35	1.0	1.0	7.5	9.5	11.0
QE_35	1.0	1.5	7.5	9.5	11.0

Table 4.18 Shoulder heights and fillets – EG/QE series

Unit: mm

4.4.2.3 WE series

Fig. 4.24 Shoulder heights and fillets – WE series

Table 4.19 Shoulder heights and fillets – WE series

Series/ size	Max. radius of fillets r ₁	Max. radius of fillets r ₂	Shoulder height of the rail E ₁	Shoulder height of the block E_2	Clearance under block H ₁
WE_17	0.4	0.4	2.5	4.0	3.0
WE_21	0.4	0.4	2.5	5.0	3.0
WE_27	0.5	0.4	2.5	7.0	4.0
WE_35	0.5	0.5	2.5	10.0	4.0

Unit: mm

4.4.2.4 MG and PM series

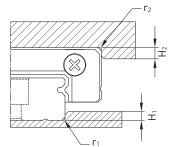


Fig. 4.25 Shoulder heights and fillets - MG and PM series

Linear Guideways

Mounting tolerances

Table 4.20 Shoulder heights and fillets – MG series

Series/ size	Max. radius of fillets r ₁	Max. radius of fillets r ₂	Shoulder height of H ₁	Shoulder height of H ₂
MGN07	0.2	0.2	1.2	3
MGN09	0.2	0.3	1.7	3
MGN12	0.3	0.4	1.7	4
MGN15	0.5	0.5	2.5	5
MGW07	0.2	0.2	1.7	3
MGW09	0.3	0.3	2.5	3
MGW12	0.4	0.4	3.0	4
MGW15	0.4	0.8	3.0	5

Unit: mm

Table 4.21 Shoulder heights and fillets – PM series

Series/ size	Max. radius of fillets r ₁	Max. radius of fillets r ₂	Shoulder height of H ₁	Shoulder height of H ₂
PMN05	0.1	0.2	1.2	2
PMN09	0.2	0.3	1.7	3
PMN12	0.3	0.4	1.7	4

Unit: mm

4.4.2.5 RG and QR series

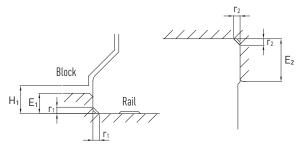


Fig. 4.26 Shoulder heights and fillets – RG/QR series

Table 4.22 Shoulder heights and fillets – RG/QR series

Series/ size	Max. radius of fillets r ₁	Max. radius of fillets r ₂	Shoulder height of the rail E ₁	Shoulder height of the block E_2	Clearance under block H ₁
RG_15	0.5	0.5	4.0	4.0	4.0
RG_20	0.5	0.5	5.0	5.0	5.0
RG/QR_25	1.0	1.0	5.0	5.0	5.5
RG/QR_30	1.0	1.0	5.0	5.0	6.0
RG/QR_35	1.0	1.0	6.0	6.0	6.5
RG/QR_45	1.0	1.0	7.0	8.0	8.0
RG_55	1.5	1.5	9.0	10.0	10.0
RG_65	1.5	1.5	10.0	10.0	12.0

Unit: mm

Linear Guideways

Tightening torques for fixing screws/Maximum length of rails

4.5 Tightening torques for fixing screws

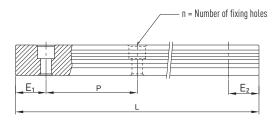

Insufficient tightening of the fixing screws strongly compromises the precision of the linear guideway; the following tightening torques are therefore recommended for the relevant screw sizes.

Table 4.23 Tightening torques of the fixing screws according to ISO 4762-12.9

Screw size	Torque [Nm]	Screw size	Torque [Nm]
M2	0.6	M8	31
M3	2	M10	70
M4	4	M12	120
M5	9	M14	160
M6	14	M16	200

4.6 Calculating the length of rails

HIWIN offers rails in customised lengths. To prevent the risk of the end of the rail becoming unstable, the value E must not exceed half of the distance between the fixing holes (P). Simultaneously, the value $E_{1/2}$ should be between $E_{1/2}$ min and $E_{1/2}$ max so that the fixing hole does not rupture.

$$L = (n-1) \cdot P + E_1 + E_2$$

L: Total rail length [mm]

- n: Number of fixing holes
- P: Distance between two fixing holes [mm]
- $E_{1/2} \hbox{: Distance from the center of the last fixing } \\ hole to the end of the rail [mm]$

Values for the maximum lengths of rails are to be found in the dimension charts in the appendix from page 65 onwards.

NOTE

Linear Guideways

Maximum lengths of fixing screws

4.7 Specificity in the assembly of QH, QE and QW blocks

Please note:

For some of our QH, QE and QW type linear guideways, the boreholes for fixing the slider on the block are connected with recirculation channels. (see Fig. 4.27). Therefore, it is important that the screws used do not exceed the maximum lengths shown in <u>Table 4.24</u>. **Non-observance may result in damage to the rolling elements and thus to a failure of the profile rail.**

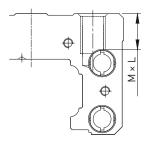


Fig. 4.27 Depiction of bore hole and recirculation channel

Table 4.24 Maximum lengths for fixing screws – QH, QE and QW blocks

Model	Max. length of fixing screw M × L [mm]	Modell	Max. length of fixing screw M × L [mm]
QHH20	M5 × 6	QEH25	M6 × 9
QHH25	M6 × 8	QEH30	M8 × 10
QHH30	M8 × 10	QWH27	Мб × б
QHH35	M8 × 12	QWH35	M8 × 8
QEH20	M5 × 7		

Linear Guideways

Jointed rails

4.8 Assembly of jointed rails

Jointed (multi-part) rails must be assembled according to the markings applied. The joints of each section are identified in a consecutive alphabetical order as well as by the rail/pair number so that each rail section can be clearly assigned.

	Section 1	Sect	tion 2	Section 3
	Joir	nt a	Joir	nt b
Rail 1	Schiene 1a	Schiene 1a	Schiene 1b	Schiene 1b
Rail 2	Schiene 2a	Schiene 2a	Schiene 2b	Schiene 2b

Fig. 4.28 Identification of jointed multi-part rails*

Each joint has a printed label on the top side of the rail. The printing provides aid for the initial assembly and can be removed at any time using a suitable cleaning agent (e.g. ethyl alcohol). For jointed multi-part rails, the word "Paar" must also be provided in addition to the rail number.

	Section 1	Secti	ion 2	Section 3
D · 4	Joir	nt a	Join	t b
Pair 1 Rail 1	Paar 1 1a	Paar 1 1a	Paar 1 1b	Paar 1 1b
Pair 1 Rail 2	Paar 1 2a	Paar 1 2a	Paar 1 2b	Paar 1 2b
Pair 2 Rail 1	Paar 2 1a	Paar 2 1a	Paar 2 1b	Paar 2 1b
Pair 2 Rail 2	Paar 2 2a	Paar 2 2a	Paar 2 2b	Paar 2 2b

Fig. 4.29 Identification of jointed multi-part paired rails*

For paired multi-part rails, the butt joints should be staggered.

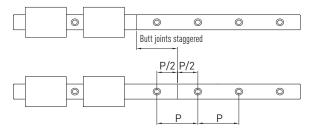


Fig. 4.30 Configuration of jointed multi-part rails

*	Paar: Pair
	Schiene: Rai

Linear Guideways

Maintenance/Lubrication

5. Maintenance

▲ DANGER!

Before and during any maintenance work on the linear guideways, the higher-level system must be disconnected from the power supply, and you must ensure that the power supply cannot be restored by anyone else. Otherwise, there is a danger of death and injury.

5.1 Cleaning

WARNING!

The legal regulations and the manufacturer's regulations concerning the use of cleaning agents must be observed.

Damage of the rail by pointed objects must be avoided in all circumstances. When cleaning, make sure that no metal particles end up or remain in the block.

- Linear guideways can be cleaned using white spirit and oil.
- Trichlorethylene or an equivalent cleaning agent can be used as a degreasing agent.
- In order to avoid corrosion, all parts must be dried and preserved/lubricated after cleaning.

6. Lubrication

6.1 Basic information on lubrication

Linear technology machine elements must be adequately supplied with lubricant to ensure correct functioning and a long service life.

These lubricating instructions are intended to assist the user in selecting suitable lubricants and lubricant quantities and in determining the appropriate lubrication intervals.

The information provided here does not release the user from his obligation to carry out practical testing to check the specified lubrication intervals and to make adjustments where necessary. After every lubrication process, a check must be carried out to ascertain whether the machine element is still adequately lubricated (check for lubricant film).

Lubricants

- reduce wear
- protect against dirt
- provide protection against corrosion

The lubricant is a constructional element and should already be taken into consideration when designing a machine. The operating temperature range and operating and ambient conditions must be considered when selecting a lubricant.

6.1.1 Safety

WARNING!

This chapter covers the safe handling of lubricants. Improper handling of lubricants can create a health hazard or the danger of fatal injury. The following instructions must be complied with. Before handling lubricants, always check the corresponding safety data sheet.

Linear Guideways

Lubrication

6.1.2 Proper use of lubricants

Prolonged and repeated contact with the skin should be avoided as far as possible. Areas of the skin splashed with lubricant should be cleaned with soap and water. Apply skin protection while working and a greasing skin cream after completing work. Where appropriate, wear oil-resistant protective clothing (e.g. gloves, apron). Do not wash your hands with petroleum, solvents or cooling lubricants which can be or are already mixed with water. Oil mist must be extracted at the point where it arises.

Protective goggles must be worn to prevent contact with the eyes. If lubricant should nevertheless get into the eyes, rinse the affected area with copious amounts of water. If irritation of the eyes persists, consult an ophthalmologist.

Under no circumstances should you induce vomiting if lubricant is accidentally swallowed. Seek medical help immediately.

As a rule, safety data sheets are available for lubricants, in accordance with 91/155/EEC. Here, you will find detailed information on health and environmental protection and accident prevention.

Most lubricants are hazardous to water. For this reason, they must never be allowed to get into the soil, water or sewage system.

6.1.3 Safety instructions for the storage of lubricants

Lubricants must be stored in well-sealed packaging in a cool, dry location. They must be protected against direct sunlight and frost. Lubricants must not be stored together with foodstuffs. Lubricants must not be stored together with oxidizing agents.

The instructions on the safety data sheet provided by the lubricant supplier must be observed.

6.2 Lubrication condition at delivery

Depending on the product group, HIWIN linear guideways are supplied either preserved or with basic lubrication. Preserved blocks are completely coated with an anticorrosive oil. Before commissioning, an initial lubrication must take place according to chapter <u>6.9</u>.

Blocks with basic lubrication are delivered with a reduced amount of grease. The lubrication channels are largely free of lubrication grease. This facilitates lubricant changeover and enables the change from grease to oil lubrication. The basic lubrication is sufficient for the commissioning of the linear guideway. Once it has been successfully commissioned, an initial lubrication must take place according to chapter <u>6.9</u>.

Table 6.1 Lubrication condition at delivery

Lubrication condition preserved	Basic lubrication
RG, MG, PM	HG, QH, EG, QE, WE, QW, QR

For initial lubrication of the linear guideways use grease suitable for rolling and slide bearings with mineral oil as base oil and thickeners according to DIN 51825 (K2K), NLGI class 2. See <u>Table 6.2</u> for base oil viscosity.

6.3 Selection of a lubricant

Oils, greases or low-viscosity greases can be used as lubricants. The same lubricants are used as for antifriction bearings. As a rule, the selection of a lubricant and the infeed method can be adapted to fit in with the lubrication of the other machine components.

Table 6.2 Base oil viscosity

Series	Base oil viscosity [mm²/s at 40 °C]
QR	100
HG, QH, EG, QE, WE, QW	200

Please note:

Lubricants containing MoS₂ or graphite must not be used.

Lubrication

6.4 Miscibility

Always check the miscibility of different lubricants. Lubricant oils based on mineral oil of the same classification (e.g. CL) and of a similar viscosity (maximum one class difference) can be mixed.

Greases can be mixed if their base oil and the thickening type are the same. The viscosity of the base oil must be similar. The maximum difference in NLGI class is one level.

The use of lubricants other than those listed can mean shorter lubrication intervals and reduced performance. Chemical reactions between plastics, lubricants and preserving agents may also occur.

6.5 Operating conditions

Essentially, the selection of a lubricant depends on the operating temperature and various operation-related factors, e.g. load, vibrations, oscillation, short-stroke applications. Special requirements such as use in combination with strong or aggressive media, in clean rooms, in a vacuum or in the foodstuff industry also need to be considered.

Chapter <u>6.11</u> contains a list of applications and suitable lubricants. If you have any doubts, consult the lubricant supplier to ensure optimum lubrication.

6.6 Use of greases and oils in centralized lubrication systems

We recommend that you carry out the initial lubrication separately before connection to a centralized lubrication system, using a grease gun. It is also important to ensure that all lines and elements up to the consumer are filled with lubricant and contain no air pockets.

Avoid long lines and lines of low diameter. Lines must be routed with an upward gradient. The number of pulses depends on the partial quantities and the size of the piston distributor. In addition, the lubrication system manufacturers' instructions must be observed.

6.7 Lubricant pressure

HIWIN linear guideways can be lubricated with grease, semi-fluid grease or oil depending on the application. The lubricant pressure required depends on the installation size, lubricant, length of the feed pipe and the type of lubrication connection. For permanent lubrication systems, a minimum pressure of 4 to 6 bar is recommended. The maximum permissible lubricant pressure is 30 bar.

Please note:

If lubricant pressures or quantities are too high, this can damage the block. In particular, for blocks with double sealing, SW sealing or ZWX sealing, lubrication must be carried out very carefully, otherwise the seals may be damaged.

6.8 Lubrication connections

HIWIN blocks offer three possibilities for installing a lubrication connection:

6.8.1 Lubrication connection on the front side

It is possible to install a lubrication connection on either side of the block. Unused connections are closed.

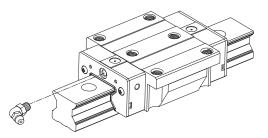
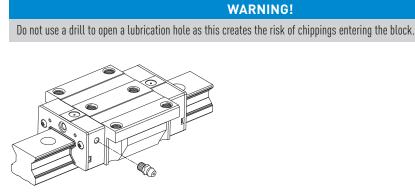


Fig. 6.1 Lubrication connection on the front side


NOTE

Linear Guideways

Lubrication

6.8.2 Lubrication connection on the side

Fig. 6.2 Lubrication connection on the side

Please note:

Before using the side lubrication connection, a thread must be cut in the prepared side hole using a screw tap for cutting blind holes. The maximum thread depth acc. <u>Table 6.3</u> must not be exceeded. Then clean the bore hole, it must be free of chips and other contaminants. Finally, the side lubrication connection must be opened at the base of the hole using a hot metal spike.

Diameter of the metal spike: Diameter 2.5 mm up to size 35 Diameter 3.0 mm from size 45

Please note:

When the first wall is broken, do not push any further as this could break through the guide of the rolling elements.

Please note:

When using the side lubrication connection, it should not be fitted on the reference side but rather on the opposite side. If it should be necessary to install the lubrication connection on the reference side, make sure that the lubrication connection does not protrude beyond the datum plane of the block.

Please note:

For side lubrication use straight conical or ball grease nipples. In flange blocks we recommend the use the respective HIWIN lubrication adapter (see <u>Table 6.3</u>), because of the reduced distance between flange and grease nipple.

NOTE

NOTE

NOTE

NOTE

Linear Guideways

Lubrication

Table 6.3 Lubrication hole on the side – Dimensions and grease nipple

Block type	Thread	Thread	Grease nippl	e and	l recommende	ed ada	apter for grease gun l	[A]
		length	Standard			Optional		
			Square block	A	Flange block	A	Square/ flange block	Α
HG 15	M4	4.5	20-000272	2	20-000272	3	20-000325	4
HG 20, 25, 30, 35	M6 × 0.75	6	20-000273	1	20-000273	2	20-000283	4
HG 45, 55, 65	1/8 PT	10	20-000280	1	20-000280	1	upon request	-
QH 15	M4	4.5	20-000272	2	20-000272	2	20-000325	4
QH 20, 25, 30	M6 × 0.75	6	20-000273	1	20-000273	2	20-000283	4
QH 35	M6 × 0.75	6	20-000273	1	20-000273	1	20-000283	4
QH 45	1/8 PT	10	20-000280	1	20-000280	1	upon request	-
EG 15	M4	4.5	20-000272	2	20-000272	3	20-000325	4
EG 20, 25	M6 × 0.75	6	20-000273	1	20-000283	4	-	-
EG 30, 35	M6 × 0.75	6	20-000273	1	20-000273	2	20-000283	4
QE 15	M4	4.5	20-000272	2	20-000272	2	20-000325	4
QE 20	M6 × 0.75	6	20-000273	1	20-000283	4	-	-
QE 25, 30, 35	M6 × 0.75	6	20-000273	1	20-000273	2	20-000283	4
WE 17	M3	4.5	20-000275	2	20-000275	3	5-000061	4
WE 21, 27	M6 × 0.75	6	20-000272	2	20-000272	3	20-000325	4
WE 35	M6 × 0.75	6	20-000273	1	20-000273	2	20-000283	4
WE 50	1/8 PT	10	20-000280	1	20-000280	2	upon request	-
QW 17	M3	4.5	20-000275	2	20-000275	3	5-000061	4
QW 21, 27	M6 × 0.75	6	20-000272	2	20-000272	3	20-000325	4
QW 35	M6 × 0.75	6	20-000273	1	20-000273	2	20-000283	4
RG 15, 20	M4	4.5	20-000272	2	20-000272	3	20-000325	4
RG 25	M6 × 0.75	6	20-000275	1	20-000275	2	20-000283	4
RG 30, 35	M6 × 0.75	6	20-000275	1	20-000275	1	20-000283	4
RG 45, 55, 65	1/8 PT	10	20-000280	1	20-000280	1	upon request	-
QR 20	M4	4.5	20-000272	2	20-000272	2	20-000325	4
QR 25	M6 × 0.75	6	20-000275	1	20-000275	2	20-000283	4
QR 30, 35	M6 × 0.75	6	20-000275	1	20-000275	1	20-000283	4
QR 45	1/8 PT	10	20-000280	1	20-000280	1	upon request	1

Linear Guideways

Lubrication

Fig. 6.3 Grease nipple M3 × 0,5 P Article number 20-000275

Fig. 6.5 Grease nipple M6 × 0,75 P Article number 20-000273

Fig. 6.7 Funnel type grease nipple M4 × 0,7 P Article number 20-000325

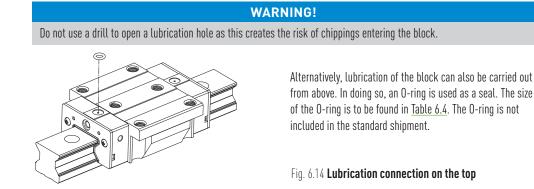
Fig. 6.9 Funnel type grease nipple M3 × 0,5 P Article number 5-000061

Fig. 6.4 Grease nipple M4 × 0,7 P Article number 20-000272

Fig. 6.6 Grease nipple 1/8 P Article number 20-000280

Fig. 6.8 Funnel type grease nipple M6 × 0,75 PT Article number 20-000283

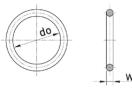
Fig. 6.12 A3 – Hollow mouthpiece 6 mm


Fig. 6.13 A4 – Ball type mouthpiece 6 mm

Linear Guideways

Lubrication

6.8.3 Lubrication connection on the top



NOTE

When using the lubrication connection on the top, it must first be opened. A further recess is located in the counterbore that receives the O-ring. This is pierced using a hot metal spike with diameter 0.8 mm to a maximum depth of D_{max} according to <u>Table 6.4</u>.

Please note: Once opened, lubrication holes for lubrication from above can not be subsequently closed with a screw plug.

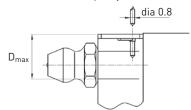


Fig. 6.16 Maximum piercing depth D_{max}

connection on the top

Fig. 6.15 O-ring to cover the lubrication

Table 6.4 O-ring specifications for lubrication connection on the top – Part 1

Series/size	0-ring			Lubrication hole on the top
	Article number	do [mm]	W [mm]	max. depth D _{max} [mm]
HG/QH_15	3451001B	2.5 ± 0.15	1.5 ± 0.15	3.75
HG/QH_20	3451001C	4.5 ± 0.15	1.5 ± 0.15	5.70
HG/QH_25	3451001C	4.5 ± 0.15	1.5 ± 0.15	5.80
HG/QH_30	3451001C	4.5 ± 0.15	1.5 ± 0.15	6.30
HG/QH_35	3451001C	4.5 ± 0.15	1.5 ± 0.15	8.80
HG/QH_45	3451001C	4.5 ± 0.15	1.5 ± 0.15	8.20
HG_55	3451001C	4.5 ± 0.15	1.5 ± 0.15	11.80
HG_65	3451001C	4.5 ± 0.15	1.5 ± 0.15	10.80
EG/QE_15	3451001B	2.5 ± 0.15	1.5 ± 0.15	6.90
EG/QE_20	3451001C	4.5 ± 0.15	1.5 ± 0.15	8.40
EG/QE_25	3451001C	4.5 ± 0.15	1.5 ± 0.15	10.40
EG/QE_30	3451001C	4.5 ± 0.15	1.5 ± 0.15	10.40
EG/QE_35	3451001C	4.5 ± 0.15	1.5 ± 0.15	10.80
WE/QW_21	3451001C	4.5 ± 0.15	1.5 ± 0.15	6.80
WE/QW_27	3451001C	4.5 ± 0.15	1.5 ± 0.15	8.40
WE/QW_35	3451001C	4.5 ± 0.15	1.5 ± 0.15	10.20

The HIWIN lubrication adapter can be used for lubrication connections.

Linear Guideways

Lubrication

Series/size	0-ring	0-ring				
	Article number	do [mm]	W [mm]	max. depth D _{max} [mm]		
RG_15	3451001B	2.5 ± 0.15	1.5 ± 0.15	3.45		
RG_20	3451001B	2.5 ± 0.15	1.5 ± 0.15	4.00		
RG/QR_25	3451000W	7.5 ± 0.15	1.5 ± 0.15	5.80		
RG/QR_30	3451000W	7.5 ± 0.15	1.5 ± 0.15	6.20		
RG/QR_35	3451000W	7.5 ± 0.15	1.5 ± 0.15	8.65		
RG/QR_45	3451000W	7.5 ± 0.15	1.5 ± 0.15	9.50		
RG_55	3451000W	7.5 ± 0.15	1.5 ± 0.15	11.60		
RG_65	3451000W	7.5 ± 0.15	1.5 ± 0.15	14.50		

Table 6.4 O-ring specifications for lubrication connection on the top – Part 2

The HIWIN lubrication adapter can be used for lubrication connections.

6.8.4 Lubrication adapter

In the series HG and RG (models HGH and RGH) spacers (lubrication adapter TCN, Top-CoNnector) must be mounted, to compensate for the height difference between recirculation system and block mounting surface. The adapters are only delivered assembled, the appropriate O-ring is included when ordering this option.

Table 6.5 Availability of the lubrication adapter TCN

Available for series/size	
RG-25	HG-25
RG-30	HG-30
RG-35	HG-35
RG-45	
RG-55	

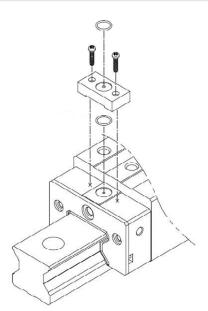


Fig. 6.17 Structure of the lubrication adapter

6.9 Initial lubrication upon commissioning

Before the HIWIN linear guideways are commissioned, an initial lubrication must take place according to these lubrication instructions. At initial lubrication the blocks are supplied with the amount of grease that is needed to reach the lubrication intervals specified in chapter <u>6.12</u>. Afterwards the lubrication channels are completely filled with grease, a switch from grease to oil lubrication is not possible anymore without a complete cleaning of the block.

HIWIN linear guideways are supplied either preserved or with basic lubrication (see chapter <u>6.2</u>)

Linear Guideways

Lubrication

The initial lubrication takes place in three steps:

Feed in the quantity of grease specified in the table for the corresponding series by slowly operating the grease gun. Move the block three times by approx. three block lengths. Repeat the above mentioned process twice more.

Then proceed the block over the entire travel distance and check whether a film of grease can be seen on the total rail. If this is not the case, increase the lubricant quantity.

If the linear guideways are installed vertically, on the side or with the rail on the top, the relubrication quantities must be increased by approx. 50 %.

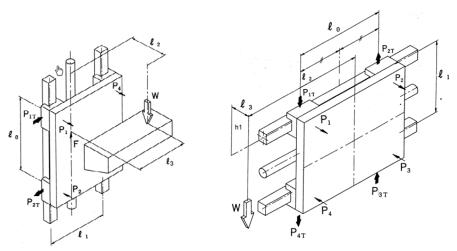


Fig. 6.18 Mounting positions of profile rails

For short-stroke applications (stroke < 2 × block length), the initial lubrication is to be carried out as follows:

Initial lubrication for short-stroke applications

Stroke < 2 × block length:	Provide lubrication connections on both sides of the block and carry out lubrication
	according to the above description for the corresponding lubrication connection.
Stroke < 0.5 × block length:	Provide lubrication connections on both sides of the block and carry out lubrication. In doing so, move the block by two block lengths several times. If this is not possible, please contact us.

6.10 Relubrication

The lubrication intervals depend heavily on the operating conditions (loads, speed, acceleration) and environmental conditions (temperature, fluids etc.). Environmental influences such as high loads, vibrations, long travel distances and dirt shorten the lubrication intervals. For clean environmental conditions, short travel distances and light loads, the lubrication intervals can be extended. Once the lubrication interval has passed, feed in the lubricant quantity specified in the table for the corresponding series by slowly operating the grease gun in a single action.

If the linear guideways are installed vertically, on the side or with the rail on the top, the relubrication quantities must be increased by approx. 50 %.

Check whether a film of grease can be seen on the total rail. If this is not the case, increase the lubricant quantity.

Relubrication for short-stroke applications

For short-stroke applications (stroke $< 2 \times$ block length), the relubrication is to be carried out as described in chapter <u>6.12</u>. For normal operating conditions, the relubrication intervals provided shall apply.

Linear Guideways

Lubrication

6.11 Recommended lubricants

Essentially, the selection of a lubricant depends on the operating temperature and various operation-related factors, e.g. load, vibrations, oscillation, short-stroke applications. Special requirements such as use in combination with strong or aggressive media, in clean rooms, in a vacuum or in the foodstuff industry also need to be considered. There follows a list of applications and suitable lubricants. If you have any doubts, consult the lubricant supplier to ensure optimum lubrication.

6.11.1 Grease lubrication

For grease lubrication we recommend grease suitable for rolling and slide bearings with mineral oil as base oil and thickeners according to DIN51825 (K1K, K2K), in heavy-duty applications with EP-additives (KP1K, KP2K). NLGI class 1 or 2. The use of greases of other consistency classes is possible subject to the approval of the lubricant supplier.

Please note:

Greases with solid particles such as graphite or MOS₂ must not be used.

The following informations on lubricants serve to provide examples and are only intended as an aid for selection. Other lubricants may be selected after clarification of the specific application with the lubricant supplier.

6.11.1.1 Standard applications

Load: max. 15 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.6 Recommended greases for standard applications

HIWIN	G05
Klüber	Klüberlub GL-261
Mobil	Mobilux EP1
Fuchs Lubritech	Lagermeister BF2
Lubcon	TURMOGREASE CAK 2502

6.11.1.2 Heavy-duty applications

Load: max. 50 % of the dynamic basic load rating Temperature range: 0 °C to + 80 °C Speed: <1 m/s

Table 6.7 Recommended greases for heavy-duty applications

HIWIN	G01
Klüber	Klüberlub BE 71-501
Fuchs Lubritech	Lagermeister EP2
Lubcon	TURMOGREASE LI 802EP

NOTE

Linear Guideways

Lubrication

6.11.1.3 Clean room/vacuum applications

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: < 1 m/s

Table 6.8 Recommended greases for clean room/vacuum applications

HIWIN	G02
Klüber	Klüberalfa HX 83-302
Fuchs Lubritech	gleitmo 591

6.11.1.4 Clean room/vacuum applications at high speeds

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: > 1 m/s

Table 6.9 Recommended greases for clean room/vacuum applications at high speeds

HIWIN	G03
Klüber	Isoflex Topas NCA52

6.11.1.5 Applications with high speeds

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: > 1 m/s

Table 6.10 Recommended greases for applications with high speeds

HIWIN	G04
Klüber	Isoflex NCA15
Lubcon	TURMOGREASE Highspeed L252

6.11.1.6 Applications in the foodstuffs industry in acc. with USDA H1

Load: max. 15 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.11 Recommended greases for applications in the foodstuffs industry in acc. with USDA H1

Klüber	Klübersynth UH1 14-151
Mobil	Mobilgrease FM102
Fuchs Lubritech	GERALYN 1

Linear Guideways

Lubrication

6.11.2 Lubrication with low-viscosity grease

In centralized lubrication systems, low-viscosity greases are frequently used, as they are distributed more effectively over the whole system due to their soft structure.

Observe the lubrication system manufacturers' instructions.

The following information on lubricants serves to provide examples and is only intended as an aid to selection. Other lubricants may be used after clarification of the specific application and the centralized lubrication system used with the lubricant supplier.

In addition, the lubricant manufacturers' instructions must be observed.

6.11.2.1 Standard applications

Load ratio: max. 15 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.12 Recommended low-viscosity greases for standard applications

Klüber	MICROLUBE GB 00
Mobil	Mobilux EP004
Fuchs Lubritech	GEARMASTER LI 400

6.11.2.2 Heavy-duty applications

Load: max. 50 % of the dynamic basic load rating Temperature range: 0 °C to + 80 °C Speed: <1 m/s

Recommended low-viscosity greases for heavy-duty applications:

Please note:

We recommend that you consult a lubricant manufacturer regarding the use of low-viscosity greases for heavy-duty applications

6.11.2.3 Clean room/vacuum applications

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Recommended low-viscosity greases for clean room/vacuum applications:

Please note:

We recommend that you consult a lubricant manufacturer regarding the use of low-viscosity greases for clean room/vacuum applications

NOTE

NOTE

Lubrication

6.11.2.4 Applications with high speeds

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: > 1 m/s

Table 6.13 Recommended low-viscosity greases for applications with high speeds

Klüber	Isoflex Topas NCA5051
Mobil	Mobilux EP004
Fuchs Lubritech	GEARMASTER LI 400

6.11.2.5 Applications in the foodstuffs industry in acc. with USDA H1

Load: max. 15 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.14 Recommended low-viscosity greases for applications in the foodstuffs industry in acc. with USDA H1

Klüber	Klübersynth UH1 14-1600
Mobil	Mobilgrese FM 003
Fuchs Lubritech	GERLYNN OO

6.11.3 Oil lubrication

Lubricating oils offer the advantage of more even distribution and reach the contact surfaces more effectively. However, this also means that lubricating oils collect in the lower area of the product as a result of the force of gravity and thus more quickly cause soiling. For this reason, higher quantities of lubricant are required than with grease lubrication. Oil lubrication is as a rule only suitable where a centralized lubrication system is used or for products equipped with a lubrication unit.

Observe the lubrication system manufacturer's instructions.

The following information on lubricants serves to provide examples and is only intended as an aid to selection. Other lubricants may be used after clarification of the specific application and the centralized lubrication system used with the lubricant supplier.

6.11.3.1 Standard applications

Load: max. 15 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.15 Recommended oils for standard applications

Klüber	Klüberoil GEM 1-150 N
Mobil	Mobilgear 630
Fuchs Lubritech	GEARMASTER CLP 320

Linear Guideways

Lubrication

NOTE

6.11.3.2 Heavy-duty applications

Load: max. 50 % of the dynamic basic load rating Temperature range: 0 °C to + 80 °C Speed: <1 m/s

Recommended oils for heavy-duty applications:

Please note: We recommend that you consult a lubricant manufacturer regarding the use of oils for heavy-duty applications

6.11.3.3 Clean room/vacuum applications

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.16 Recommended oils for clean room/vacuum applications

Klüber	Tyreno Fluid E-95 V
Mobil	Mobilgear 626

6.11.3.4 Applications with high speeds

Load: max. 50 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: >1 m/s

Table 6.17 Recommended oils for applications with high speeds

Klüber

Klüberoil GEM 1-46 N

6.11.3.5 Applications in the foodstuffs industry in acc. with USDA H1

Load: max. 15 % of the dynamic basic load rating Temperature range: -10 °C to + 80 °C Speed: <1 m/s

Table 6.18 Recommended oils for applications in the foodstuffs industry in acc. with USDA H1

Klüber

Klüberoil 4 UH1-68 N

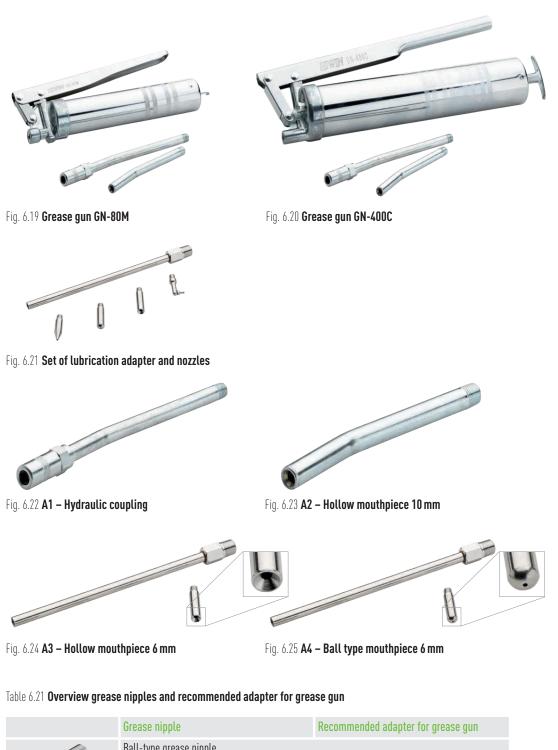
Lubrication

6.11.4 HIWIN lubricants

6.11.4.1 HIWIN greases

Table 6.19 Overview HIWIN greases

Grease	Application	Article number		
type		Cartridge 70 g	Cartridge 400 g	Can 1 kg
			CONTRACTOR COLOR	BURNOW GREASE Down Lever Big man down with the man down with
G01	Heavy-duty applications	20-000335	20-000336	20-000337
G02	Clean room applications	20-000338	20-000339	20-000340
G03	Clean room applications at high speeds	20-000341	20-000342	20-000343
G04	Applications with high speeds	20-000344	20-000345	20-000346
G05	Standard grease	20-000347	20-000348	20-000349


Table 6.20 HIWIN grease guns

Article no.	Description	Scope of delivery	Comment
5-12-0009	Grease gun GN-80M incl. set of lubrication adapter and nozzles (see <u>Fig. 6.19</u>)	 Grease gun GN-80M consisting of: Grease gun Hydraulic coupling A1 suitable for conical grease nipples acc. to DIN 71412, outer diameter 15 mm Hollow mouthpiece A2 suitable for conical or ball grease nipples acc. to DIN 71412/DIN 3402, outer diameter 10 mm Set of lubrication adapter and nozzles 	Suitable for 70 g cartridge or direct filling
5-12-0010	Grease gun GN-400C incl. set of lubrication adapter and nozzles (see <u>Fig. 6.20</u>)	 Grease gun GN-400-C consisting of: Grease gun Hydraulic coupling A1 suitable for conical grease nipples acc. to DIN 71412, outer diameter 15 mm Hollow mouthpiece A2 suitable for conical or ball grease nipples acc. to DIN 71412/DIN 3402, outer diameter 10 mm Set of lubrication adapter and nozzles 	Suitable for 400 g cartridge or direct filling
5-12-0035	Set of lubrication adapter and nozzles (see <u>Fig. 6.21</u>)	 Set of lubrication adapter and nozzles consisting of: Hollow mouthpiece A3 suitable for ball grease nipples acc. to DIN 3402, outer diameter 6 mm Ball type mouthpiece A4 for funnel type grease nipples acc. to DIN 3405 outer diameter 6 mm Tip mouthpiece A5 Tip mouthpiece angled A6 	

Linear Guideways

Lubrication

	Grease nipple	Recommended adapter for grease gun		
de.	Ball-type grease nipple			
	M3 × 0,5 P	A2, A3 ¹		
	M4 × 0,7 P	A2, A3 ¹⁾		
	Conical grease nipple			
	M6 × 0,75 P	A1, A2 ^{1]}		
0	1/8 PT	A1, A2 ¹⁾		
	M3 × 0,5 P	A4		
	M4 × 0,7 P	A4		
*	M6 × 0,75 P	A4		

 $^{1]}\ensuremath{\text{optional}}\xspace$ for limited installation space

Linear Guideways

Lubrication

6.11.4.2 HIWIN oils

Article number	Description	Scope of delivery	Comment
20-000350	Mobil SHC 636	1 l bottle	Oil for E2 lubrication unit

6.12 Lubricant quantities and lubrication intervals

WARNING!
Never commission linear guideways without carrying out basic lubrication.
In general, if lubricant quantities or lubrication pressure are too high, this can damage or destroy the product. The speci-
fied procedure must be observed in order to avoid damaging the product.

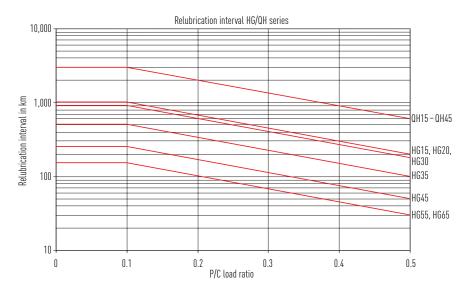
The lubricant quantities specified below are reference values that may fluctuate according to the environmental conditions. Among other conditions, the relubrication intervals depend on the P/C load ratio, where P stands for the dynamically equivalent load and C stands for the dynamic load rating. More information concerning these values can be found in the appendix.

6.12.1 Lubricant quantities and lubrication intervals for grease lubrication

6.12.1.1 Lubricant quantities for grease lubrication of the HG/QH series

Table 6.23 Lubricant quantities for grease lubrication of the HG series

Series/	Initial lubrication partial quantity [cm³]		Relubrication quantity [cm ³]	
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
HG_15	0.3 (3 ×)	_	0.3	-
HG_20	0.5 (3 ×)	0.7 (3 ×)	0.5	0.7
HG_25	0.8 (3 ×)	1.0 (3 ×)	0.8	1.0
HG_30	1.3 (3 ×)	1.7 (3 ×)	1.3	1.7
HG_35	1.9 (3 ×)	2.4 (3 ×)	1.9	2.4
HG_45	3.8 (3 ×)	4.6 (3 ×)	3.8	4.6
HG_55	6.3 (3 ×)	7.7 (3 ×)	6.3	7.7
HG_65	10.0 (3 ×)	13.5 (3 ×)	10.0	13.5


Table 6.24 Lubricant quantities for grease lubrication of the QH series

Series/	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm ³]	
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
QH_15	0.3 (3 ×)	-	0.3	-
QH_20	0.5 (3 ×)	0.6 (3 ×)	0.5	0.6
QH_25	0.6 (3 ×)	0.8 (3 ×)	0.6	0.8
QH_30	1.1 (3 ×)	1.3 (3 ×)	1.1	1.3
QH_35	1.6 (3 ×)	1.9 (3 ×)	1.6	1.9
QH_45	3.0 (3 ×)	3.7 (3 ×)	3.0	3.7

Linear Guideways

Lubrication

6.12.1.2 Lubricant quantities for grease lubrication of the EG/QE series

Table 6.25 Lubricant quantities for grease lubrication of the EG series

Series/	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm ³]	
size	Average load (S)	Heavy duty (C)	Average load (S)	Heavy duty (C)
EG_15	0.2 (3 ×)	0.3 (3 ×)	0.2	0.3
EG_20	0.3 (3 ×)	0.4 (3 ×)	0.3	0.4
EG_25	0.5 (3 ×)	0.8 (3 ×)	0.5	0.8
EG_30	0.7 (3 ×)	1.1 (3 ×)	0.7	1.1
EG_35	0.9 (3 ×)	1.4 (3 ×)	0.9	1.4

Table 6.26 Lubricant quantities for grease lubrication of the QE series

Series/	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm³]	
size	Average load (S)	Heavy duty (C)	Average load (S)	Heavy duty (C)
QE_15	0.2 (3 ×)	0.3 (3 ×)	0.2	0.3
QE_20	0.3 (3 ×)	0.4 (3 ×)	0.3	0.4
QE_25	0.4 (3 ×)	0.7 (3×)	0.4	0.7
QE_30	0.6 (3 ×)	0.9 (3 ×)	0.6	0.9
QE_35	0.8 (3 ×)	1.2 (3 ×)	0.8	1.2

Linear Guideways

Lubrication

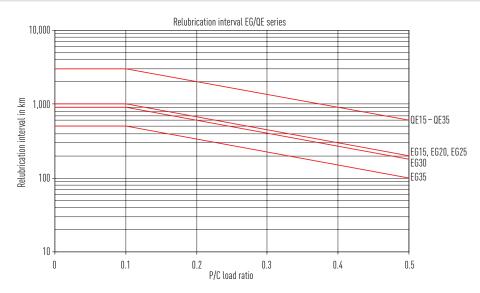


Fig. 6.27 Load-dependent relubrication intervals for grease lubrication - EG series

6.12.1.3 Lubricant quantities for grease lubrication of the WE series

Table 6.27 Lubricant quantities for grease lubrication of the WE series

Series/ size	Initial lubrication partial quantity [cm ³]	Relubrication quantity [cm ³]
WE_17	0.1 (3 ×)	0.1
WE_21	0.2 (3 ×)	0.2
WE_27	0.6 (3 ×)	0.3
WE_35	1.6 (3 ×)	0.4
WE_50	7.7 (3 ×)	7.7

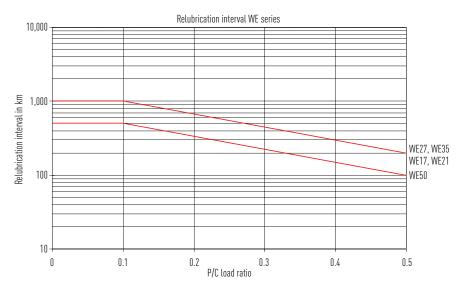


Fig. 6.28 Load-dependent relubrication intervals for grease lubrication – WE series

Linear Guideways

Lubrication

6.12.1.4 Lubricant quantities for grease lubrication of the MG series

Table 6.28 Lubricant quantities for grease lubrication of the MG series

Series/	Initial lubrication partial quantity [cm³]		Relubrication quantity [cm ³]	
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
MGN07	0.01 (3 ×)	0.02 (3 ×)	0.01	0.02
MGN09	0.02 (3 ×)	0.03 (3 ×)	0.02	0.03
MGN12	0.03 (3 ×)	0.03 (3 ×)	0.04	0.07
MGN15	0.04 (3 ×)	0.06 (3 ×)	0.07	0.09
MGW07	0.01 (3 ×)	0.02 (3 ×)	0.01	0.02
MGW09	0.02 (3 ×)	0.03 (3 ×)	0.02	0.03
MGW12	0.04 (3 ×)	0.07 (3 ×)	0.04	0.07
MGW15	0.07 (3 ×)	0.09 (3 ×)	0.07	0.09

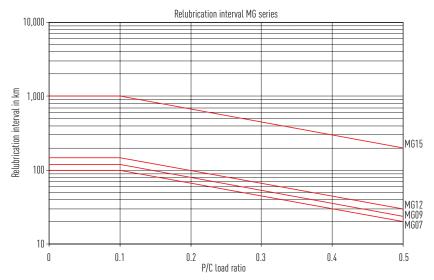


Fig. 6.29 Load-dependent relubrication intervals for grease lubrication – MG series

6.12.1.5 Lubricant quantities for grease lubrication of the PM series

Table 6.29 Lubricant quantities for grease lubrication of the PM series

Series/	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm³]	
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
PMN05	0.002 (3 ×)	0.003 (3 ×)	0.002	0.003
PMN07	0.01 (3 ×)	0.02 (3 ×)	0.01	0.02
PMN09	0.02 (3 ×)	0.03 (3 ×)	0.02	0.03
PMN12	0.03 (3 ×)	0.03 (3 ×)	0.04	0.07
PMN15	0.04 (3 ×)	0.06 (3 ×)	0.07	0.09

Linear Guideways

Lubrication

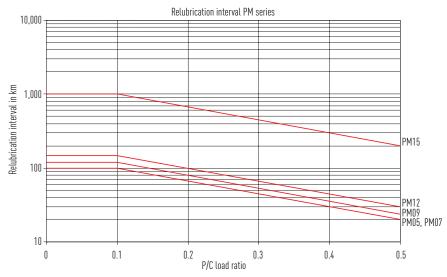


Fig. 6.30 Load-dependent relubrication intervals for grease lubrication - PM series

6.12.1.6 Lubricant quantities for grease lubrication of the RG/QR series

Table 6.30 Lubricant quantities for grease lubrication of the RG series

Series/	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm ³]	
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
RG_15	0.5 (3 ×)	—	0.3	-
RG_20	0.8 (3 ×)	1.0 (3 ×)	0.8	1.0
RG_25	1.2 (3 ×)	1.4 (3 ×)	1.2	1.4
RG_30	1.5 (3 ×)	1.7 (3 ×)	1.5	1.7
RG_35	2.0 (3 ×)	2.4 (3 ×)	2.0	2.4
RG_45	3.2 (3 ×)	3.9 (3 ×)	3.2	3.9
RG_55	4.7 (3 ×)	5.9 (3 ×)	4.7	5.9
RG_65	8.7 (3 ×)	10.5 (3 ×)	8.7	10.5

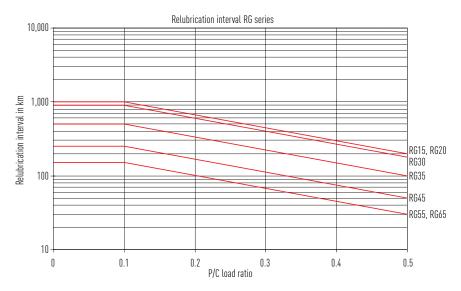


Fig. 6.31 Load-dependent relubrication intervals for grease lubrication – RG series

Linear Guideways

Lubrication

6.12.2 Lubricant quantities and lubrication intervals for semi-fluid grease lubrication

When using a central lubrication system, it is recommended that the initial lubrication (see chapter <u>6.9</u>) is carried out separately using a manual grease gun before connection to the system. Furthermore, make sure that all pipes and elements up to the user are filled with lubricant and that no air pockets are

present. Long pipelines and narrow pipe diameters are to be avoided. The pipes are to be installed on an incline.

The pulse count results from the partial quantities and the piston distributor sizes.

In addition, the lubrication system manufacturer's regulations must be observed.

Lubricant quantities for semi-fluid grease lubrication

The quantities for lubrication with semi-fluid grease are identical to those for grease lubrication.

Relubrication interval for semi-fluid grease lubrication

The relubrication intervals for semi-fluid grease lubrication are reduced by 25 %, based on the relubrication intervals for grease lubrication (period between two lubrications).

Piston distributor sizes for feed units (single-line systems) for semi-fluid grease lubrication

In order to ensure sufficient lubrication, the following minimum sizes for the piston distributors must be observed. The interval between the individual lubrication pulses results from the relubrication quantity, the relubrication interval and the piston distributor size:

Interval between lubrication pulses [km] =	Piston distributor size [cm ³]	x Relubrication interval [km]
interval between tubilcation pulses [kin] -	Relubrication quantity [cm ³]	

Table 6.31 Piston distributor sizes for feed units

Size	Piston distributor size [cm ³]				
	Mounting position horizontal	Mounting position vertical	Mounting position wall mounting		
15	0.03	0.06	0.06		
20	0.03	0.06	0.06		
25	0.06	0.10	0.10		
30	0.10	0.20	0.20		
35	0.16	0.30	0.30		
45	0.20	0.40	0.40		
55	0.30	0.60	0.60		
65	0.30	0.60	0.60		

6.12.3 Lubricant quantities for oil lubrication

When using a central lubrication system, make sure that all pipes and elements up to the user are filled with lubricant and that no air pockets are present. Long pipelines and narrow pipe diameters are to be avoided. The pipes are to be installed on an incline.

The pulse count results from the partial quantities and the piston distributor sizes. The interval between two pulses can be calculated from the ratio of the pulse count and the relubrication interval.

In addition, the lubrication system manufacturer's regulations must be observed.

Linear Guideways

Lubrication

Table 6.32 Lubricant quantities for oil lubrication of the HG/QH and EG/QE series

Size	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm ³]			
	Average load (S)	Heavy duty (C)	Super heavy duty (H)	Average load (S)	Heavy duty (C)	Super heavy duty (H)
15	0.3 (3 ×)	0.3 (3 ×)	_	0.3	0.3	_
20	0.5 (3 ×)	0.5 (3 ×)	0.5 (3 ×)	0.5	0.5	0.5
25	0.7 (3 ×)	0.8 (3 ×)	1.0 (3 ×)	0.7	0.8	1.0
30	0.9 (3 ×)	1.0 (3 ×)	1.2 (3 ×)	0.9	1.0	1.2
35	1.2 (3 ×)	1.5 (3 ×)	1.8 (3 ×)	1.2	1.5	1.8
45	—	1.7 (3 ×)	2.0 (3 ×)	-	1.7	2.0
55	—	2.5 (3 ×)	2.8 (3 ×)	_	2.5	2.8
65	-	4.5 (3×)	4.8 (3 ×)	-	4.5	4.8

Table 6.33 Lubricant quantities for oil lubrication of the WE series

Series/	Initial lubrication partial quantity [cm ³]	Relubrication quantity [cm ³]
size	Heavy duty (C)	Heavy duty (C)
WE_17	0.3 (3 ×)	0.3
WE_21	0.4 (3 ×)	0.4
WE_27	0.7 (3 ×)	0.7
WE_35	1.2 (3 ×)	1.2
WE_50	2.8 (3 ×)	2.8

Table 6.34 Lubricant quantities for oil lubrication of the MG series

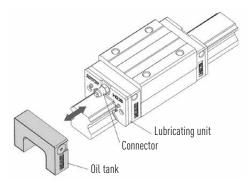
Series/	Initial lubrication partial quantity [cm ³]		Relubrication quantity [cm ³]	
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
MGN07	0.01 (3 ×)	0.02 (3 ×)	0.01	0.02
MGN09	0.02 (3 ×)	0.03 (3 ×)	0.02	0.03
MGN12	0.03 (3 ×)	0.03 (3 ×)	0.04	0.07
MGN15	0.04 (3 ×)	0.06 (3 ×)	0.07	0.09
MGW07	0.01 (3 ×)	0.02 (3 ×)	0.01	0.02
MGW09	0.02 (3 ×)	0.03 (3 ×)	0.02	0.03
MGW12	0.04 (3 ×)	0.07 (3 ×)	0.04	0.07
MGW15	0.07 (3 ×)	0.09 (3 ×)	0.07	0.09

Table 6.35 Lubricant quantities for oil lubrication of the RG/QR series

Series/	Initial lubrication partial	quantity [cm³]	Relubrication quantity [ci	n³]
size	Heavy duty (C)	Super heavy duty (H)	Heavy duty (C)	Super heavy duty (H)
RG_15	0.3 (3 ×)	-	0.3	-
RG_20	0.5 (3 ×)	0.5 (3 ×)	0.5	0.5
RG_25	0.8 (3 ×)	1.0 (3 ×)	0.8	1.0
RG_30	1.0 (3 ×)	1.2 (3 ×)	1.0	1.2
RG_35	1.3 (3 ×)	1.7 (3 ×)	1.3	1.7
RG_45	1.6 (3 ×)	1.8 (3 ×)	1.6	1.8
RG_55	2.2 (3 ×)	2.6 (3 ×)	2.2	2.6
RG_65	4.2 (3 ×)	4.5 (3 ×)	4.2	4.5

Relubrication interval for oil lubrication

The relubrication intervals for oil lubrication are reduced to 50 % of the relubrication intervals for grease lubrication (period between two lubrications).


Linear Guideways

Lubrication

6.13 Self-lubricating linear guideway E2

The self-lubricating E2 linear guideway consists of a lubricator between the end cap and the end seal, and a replaceable oil cartridge. The block does not need to be disassembled in order to replace the oil cartridge.

Lubrication passes from the oil cartridge via the connector to the lubricator which then lubricates the track of the rail. Due to the specific design of the oil tank, the block can be assembled in any position without influencing the lubrication effect. The replacement intervals of the oil tank depend heavily on the loads and the environmental conditions. Environmental influences such as high loads, vibrations and dirt shorten the replacement intervals.

Table 6.36 indicates the maximum interval at which the fill level of the oil tank should be checked.

Table 6.36 Oil quantities in the oil tank

Model	Oil quantity [cm³]	Mileage [km]
HG15E2	1.6	2000
HG20E2	3.9	4000
HG25E2	5.1	6000
HG30E2	7.8	8000
HG35E2	9.8	10000
HG45E2	18.5	20000
HG55E2	25.9	30000
HG65E2	50.8	40000
EG15E2	1.7	2000
EG20E2	2.9	3000
EG25E2	4.8	5000
EG30E2	8.9	9000
RG25E2	5.0	6000
RG30E2	7.5	8000
RG35E2	10.7	10000
RG45E2	18.5	20000
RG55E2	26.5	30000
RG65E2	50.5	40000

Standard oil: Mobil SHC 636 Fully synthetic with a hydrocarbon base (PAO) Viscosity grade: ISO VG 680 Alternatively, oils of the same classification and viscosity may be used.

Linear Guideways

Procedures for incidents

7. Procedures for incidents

Interference	Possible cause	Correction
High level of operating noise while the linear guideway is running	Travel speed of the rail is too high	Verification of the permissible travel speed
	Insufficient lubrication	Lubricate the linear guideway as speci- fied in the lubrication instructions
Blocks require high displacement forces	Preload of the block on the rail is too high	Check the required preload of the block

Linear Guideways

Disposal

8. Disposal

WARNING!

Danger caused by environmentally hazardous substances!

The danger to the environment depends on the type of substance used.

- Clean contaminated parts thoroughly before disposal!
- Clarify the requirements for safe disposal with disposal companies and, where appropriate, with the competent authorities!

Fluids Lubricants dispose of as hazardous waste in an environmentally friendly way Soiled cleaning cloths dispose of as hazardous waste in an environmentally friendly way Blocks Blocks Steel components dispose of separately Plastic components dispose of as residual waste Rails Steel components Ispose of separately Plastic bolt caps

9. Appendix

9.1 Maximum speed and acceleration for HIWIN linear guideways

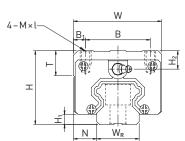
The following maximum speeds and accelerations are permitted for HIWIN linear guideways*:

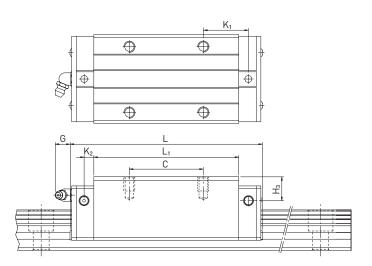
Table 9.1 Permissible maximum speeds and accelerations for HIWIN linear guideways

Model	Max. speed v _{max} [m/s]	Max. acceleration a _{max} [m/s ²]
QH, QE, QW	5	50
HG, EG, WE, QR	4	40
RG	3	30
MG, PM	2	30

* Depending on the application, higher values are possible. Please consult HIWIN on this matter.

Linear Guideways



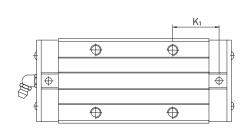

Appendix

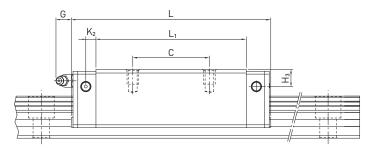
9.2 Technical data for blocks

9.2.1 Dimensions of the HG/QH blocks

HGH/QHH

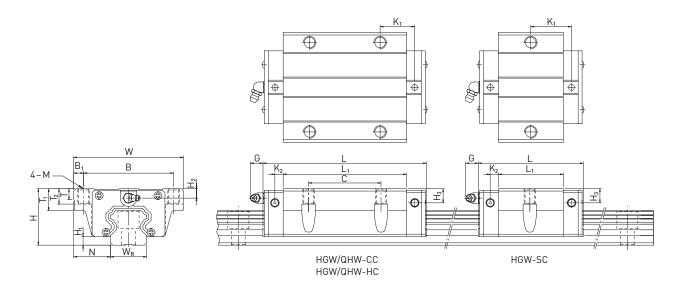

Series Size		llation nsions [m	1m]	Dimer [mm]	nsions of	f the blo	ck										Load rat [N]	ings	Mass [kg]
	Η	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	Μ×l	T	H ₂	H ₃	C _{dyn}	C ₀	
HGH15CA	28	4.3	9.5	34	26	4.0	26	39.4	61.4	10.00	4.85	5.3	M4 × 5	6.0	7.95	7.7	11380	16970	0.18
QHH15CA	28	4.0	9.5	34	26	4.0	26	39.4	61.4	10.00	5.00	5.3	M4 × 5	6.0	7.95	8.2	13880	14360	0.18
HGH20CA	30	4.6	12.0	44	32	6.0	36	50.5	77.5	12.25	6.00	12.0	M5 × 6	8.0	6.00	6.0	17750	27760	0.30
HGH20HA	JU	4.0	12.0	44	JZ	0.0	50	65.2	92.2	12.60	0.00	12.0	140 × 0	0.0	0.00	0.0	21180	35900	0.39
QHH20CA	30	4.6	12.0	44	32	6.0	36	50.5	76.7	11.75	6.00	12.0	M5 × 6	8.0	6.00	6.0	23080	25630	0.29
QHH20HA	JU	4.0	12.0	44	JZ	0.0	50	65.2	91.4	12.10	0.00	12.0	140 × 0	0.0	0.00	0.0	27530	31670	0.38
HGH25CA	40	5.5	12.5	48	35	6.5	35	58.0	84.0	15.70	6.00	12.0	M6 × 8	8.0	10.00	9.0	26480	36490	0.51
HGH25HA	40	J.J	12.0	40	11	0.0	50	78.6	104.6	18.50	0.00	12.0	110 ~ 0	0.0	10.00	7.0	32750	49440	0.69
QHH25CA	40	5.5	12.5	48	35	6.5	35	58.0	83.4	15.70	6.00	12.0	M6 × 8	8.0	10.00	9.0	31780	33680	0.50
QHH25HA	40	0.0	12.0	40	00	0.0	50	78.6	104.0	18.50	0.00	12.0	110 ~ 0	0.0	10.00	7.0	39300	43620	0.68
HGH30CA	45	6.0	16.0	60	40	10.0	40	70.0	97.4	20.25	6.00	12.0	M8 × 10	8.5	9.50	13.8	38740	52190	0.88
HGH30HA	40	0.0	10.0	00	40	10.0	60	93.0	120.4	21.75	0.00	12.0	110 ~ 10	0.0	7.00	10.0	47270	69160	1.16
QHH30CA	45	6.0	16.0	60	40	10.0	40	70.0	97.4	19.50	6.25	12.0	M8 × 10	8.5	9.50	9.0	46490	48170	0.87
QHH30HA	40	0.0	10.0	00	40	10.0	60	93.0	120.4	21.75	0.20	12.0	110 ~ 10	0.0	7.00	7.0	56720	65090	1.15
HGH35CA	55	7.5	18.0	70	50	10.0	50	80.0	112.4	20.60	7.00	12.0	M8 × 12	10.2	16.00	19.6	49520	69160	1.45
HGH35HA	00	7.0	10.0	70	00	10.0	72	105.8	138.2	22.50	7.00	12.0	110 12	10.2	10.00	17.0	60210	91630	1.92
QHH35CA	55	7.5	18.0	70	50	10.0	50	80.0	113.6	19.00	7.50	12.0	M8 × 12	10.2	15.50	13.5	60520	63840	1.44
QHH35HA	00	7.0	10.0	70	00	10.0	72	105.8	139.4	20.90	7.00	12.0	110 12	10.2	10.00	10.0	73590	86240	1.90
HGH45CA	70	9.5	20.5	86	60	13.0	60	97.0	139.4	23.00	10.00	12.9	M10 × 17	16.0	18.50	30.5	77570	102710	2.73
HGH45HA		,	2010				80	128.8	171.2	28.90				1010		0010	94540	136460	3.61
QHH45CA	70	9.2	20.5	86	60	13.0	60	97.0	139.4	23.00	10.00	12.9	M10 × 17	16.0	18.50	20.0	89210	94810	2.72
QHH45HA							80	128.8	171.2	29.09							108720	128430	3.59
HGH55CA	80	13.0	23.5	100	75	12.5	75	117.7	166.7	27.35	11.00	12.9	M12 × 18	17.5	22.00	29.0	114440	148330	4.17
HGH55HA							95	155.8	204.8	36.40							139350	196200	5.49
HGH65CA	90	15.0	31.5	126	76	25.0	70	144.2	200.2	43.10	14.00	12.9	M16 × 20	25.0	15.00	15.0	163630	215330	7.00
HGH65HA							120	203.6	259.6	47.80							208360	303130	9.82




Linear Guideways

Appendix

HGL


Series Size	Install dimen	lation sions [m	ım]	Dimen [mm]	sions of	f the bla	ck										Load rat [N]	ings	Mass [kg]
	H	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×l	Т	H ₂	H ₃	C _{dyn}	C ₀	
HGL15CA	24	4.3	9.5	34	26	4.0	26	39.4	61.4	10.00	4.85	5.3	$M4 \times 4$	6.0	3.95	3.7	11380	16970	0.14
HGL25CA	36	5.5	12.5	48	35	6.5	35	58.0	84.0	15.70	6.00	12.0	M6 × 6	8.0	6.00	5.0	26480	36490	0.42
HGL25HA	30	0.0	12.0	40	20	0.0	50	78.6	104.6	18.50	0.00	12.0	I™IO × 0	0.0	0.00	J.U	32750	49440	0.57
HGL30CA	42	6.0	16.0	60	40	10.0	40	70.0	97.4	20.25	6.00	12.0	M8 × 10	8.5	6.50	10.8	38740	52190	0.78
HGL30HA	42	0.0	10.0	00	40	10.0	60	93.0	120.4	21.75	0.00	12.0	140 × 10	0.0	0.00	10.0	47270	69160	1.03
HGL35CA	48	7.5	18.0	70	50	10.0	50	80.0	112.4	20.60	7.00	12.0	M8 × 12	10.2	9.00	12.6	49520	69160	1.14
HGL35HA	40	7.0	10.0	70	00	10.0	72	105.8	138.2	22.50	7.00	12.0	140 × 12	10.2	7.00	12.0	60210	91630	1.52
HGL45CA	60	9.5	20.5	86	60	13.0	60	97.0	139.4	23.00	10.00	12.9	M10 × 17	16.0	8.50	20.5	77570	102710	2.08
HGL45HA	00	7.0	20.0	00	00	13.0	80	128.8	171.2	28.90	10.00	12.7	1110 × 17	10.0	0.00	20.0	94540	136460	2.75
HGL55CA	70	13.0	23.5	100	75	12.5	75	117.7	166.7	27.35	11.00	12.9	M12 × 18	17.5	12.00	19.0	114440	148330	3.25
HGL55HA	70	13.0	20.0	100	75	12.0	95	155.8	204.8	36.40	11.00	12.7	1417 × 10	17.0	12.00	17.0	139350	196200	4.27

Linear Guideways

Appendix

HGW/QHW

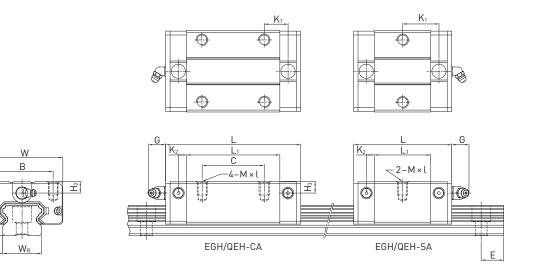
Series Size		llation nsions [[mm]	Dimer [mm]	nsions	of the b	lock												Load rat [N]	ings	Mass [kg]
	H	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	М	G	Т	T ₁	T ₂	H ₂	H ₃	C _{dyn}	C ₀	
HGW15CC	24	4.3	16.0	47	38	4.5	30	39.4	61.4	8.00	4.85	M5	5.3	6.0	8.9	7.0	3.95	3.7	11380	16970	0.17
QHW15CC	24	4.0	16.0	47	38	4.5	30	39.4	61.4	8.00	5.00	M5	5.3	6.0	8.9	7.0	3.95	4.2	13880	14360	0.17
HGW20SC							—	29.5	54.3	19.65									12190	16110	0.28
HGW20CC	30	4.6	21.5	63	53	5.0	40	50.5	77.5	10.25	6.00	M6	12.0	8.0	10.0	9.5	6.00	6.0	17750	27760	0.40
HGW20HC							40	65.2		17.60									21180	35900	0.52
QHW20CC	30	4.6	21.5	63	53	5.0	40	50.5	76.7	9.75	6.00	M6	12.0	8.0	10.0	9.5	6.00	6.0	23080	25630	0.40
QHW20HC	00	1.0	21.0	00	00	0.0	10	65.2		17.10	0.00	110	12.0	0.0	10.0	7.0	0.00	0.0	27530	31670	0.52
HGW25CC	36	5.5	23.5	70	57	6.5	45	58.0		10.70	6.00	M8	12.0	8.0	14.0	10.0	6.00	5.0	26480	36490	0.59
HGW25HC								78.6		21.00									32750	49440	0.80
QHW25CC	36	5.5	23.5	70	57	6.5	45	58.0		10.70	6.00	M8	12.0	8.0	14.0	10.0	6.00	5.0	31780	33680	0.59
QHW25HC	_							78.6		21.00									39300	43620	0.80
HGW30CC	42	6.0	31.0	90	72	9.0	52	70.0		14.25	6.00	M10	12.0	8.5	16.0	10.0	6.50	10.8	38740	52190	1.09
HGW30HC	_							93.0		25.75									47270	69160	1.44
QHW30CC	42	6.0	31.0	90	72	9.0	52	70.0		13.50	6.25	M10	12.0	8.5	16.0	10.0	6.50	6.0	46490	48170	1.09
QHW30HC HGW35CC								93.0 80.0	120.4 112.4										56720	65090	1.44
HGW35CC	48	7.5	33.0	100	82	9.0	62	105.8	138.2		7.00	M10	12.0	10.1	18.0	13.0	9.00	12.6	49520 60210	69160 91630	1.56 2.06
QHW35CC								80.0	113.6										60520	63840	1.56
QHW35HC	48	7.5	33.0	100	82	9.0	62	105.8	139.4		7.50	M10	12.0	10.1	18.0	13.0	8.50	6.5	73590	86240	2.06
HGW45CC								97.0	139.4										77570	102710	2.79
HGW45HC	60	9.5	37.5	120	100	10.0	80		171.2		10.00	M12	12.9	15.1	22.0	15.0	8.50	20.5	94540	136460	3.69
QHW45CC									139.4										89210	94810	2.79
QHW45HC	60	9.2	37.5	120	100	10.0	80	128.8	171.2	28.90	10.00	M12	12.9	15.1	22.0	15.0	8.50	10.0	108720	128430	3.69
HGW55CC	70	10.0	() F	1/0	11/	10.0	05	117.7	166.7	17.35	11 00	M1 /	10.0	17 5	0/ F	17.0	10.00	10.0	114440	148330	4.52
HGW55HC	70	13.0	43.5	140	116	12.0	95	155.8	204.8	36.40	11.00	M14	12.9	17.5	26.5	17.0	12.00	19.0	139350	196200	5.96
HGW65CC	00	15.0	ED E	170	1/0	1/0	110	144.2	200.2	23.10	1/00	M1/	12.0	25.0	07 F	22.0	10.00	10	163630	215330	9.17
HGW65HC	90	15.0	53.5	170	142	14.0	110	203.6	259.6	52.80	14.00	M16	12.9	25.0	37.5	23.0	15.00	15.0	208360	303130	12.89

Linear Guideways

Appendix

9.2.2 Dimensions of the EG/QE blocks

B

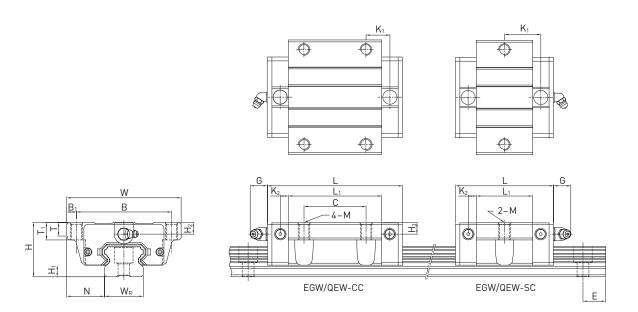

4

Э

Ν

ŕ

EGH/QEH

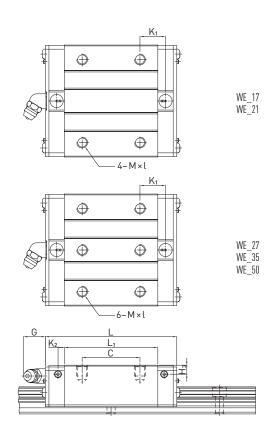

Series Size	Instal dimen	lation sions (m	ım]	Dimer [mm]	isions o	f the blo	ick										Load ra [N]	tings	Mass [kg]
	H	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×l	T	H ₂	H ₃	C _{dyn}	C ₀	
EGH15SA	24	4.5	9.5	34	26	4.0	—	23.1	40.1	14.80	3.50	5.7	M4 × 6	6.0	5.5	6.0	5350	9400	0.09
EGH15CA	24	4.0	7.0	34	20	4.0	26	39.8	56.8	10.15	5.00	0.7	I*I4 × 0	0.0	0.0	0.0	7830	16190	0.15
QEH15SA	24	4.0	9.5	34	26	4.0	—	23.1	40.1	14.80	3.50	5.7	M4 × 6	6.0	5.5	6.0	8560	8790	0.09
QEH15CA	24	4.0	7.0	34	20	4.0	26	39.8	56.8	10.15	5.00	0.7	1º14 × 0	0.0	0.0	0.0	12530	15280	0.15
EGH20SA	28	6.0	11.0	42	32	5.0	—	29.0	50.0	18.75	4.15	12.0	M5 × 7	7.5	6.0	6.0	7230	12740	0.15
EGH20CA	20	0.0	11.0	42	JZ	0.0	32	48.1	69.1	12.30	4.10	12.0	1 × CIM	7.0	0.0	0.0	10310	21130	0.24
QEH20SA	28	6.0	11.0	42	32	5.0	—	29.0	50.0	18.75	4.15	12.0	M5 × 7	7.5	6.0	6.5	11570	12180	0.15
QEH20CA	20	0.0	11.0	42	JZ	0.0	32	48.1	69.1	12.30	4.10	12.0	M0 × 7	7.0	0.0	0.0	16500	20210	0.23
EGH25SA	33	7.0	12.5	48	35	6.5	—	35.5	59.1	21.90	4.55	12.0	M6 × 9	8.0	8.0	8.0	11400	19500	0.25
EGH25CA	00	7.0	12.0	40	00	0.0	35	59.0	82.6	16.15	4.00	12.0	1.10 ~ 7	0.0	0.0	0.0	16270	32400	0.41
QEH25SA	33	6.2	12.5	48	35	6.5	—	35.5	60.1	21.90	5.00	12.0	M6 × 9	8.0	8.0	8.0	18240	18900	0.24
QEH25CA	00	0.2	12.0	40	00	0.0	35	59.0	83.6	16.15	0.00	12.0	1.10 ~ 7	0.0	0.0	0.0	26030	31490	0.40
EGH30SA	42	10.0	16.0	60	40	10.0	—	41.5	69.5	26.75	6.00	12.0	M8 × 12	9.0	8.0	9.0	16420	28100	0.45
EGH30CA	42	10.0	10.0	00	40	10.0	40	70.1	98.1	21.05	0.00	12.0	110 ~ 12	7.0	0.0	7.0	23700	47460	0.76
QEH30SA	42	10.0	16.0	60	40	10.0	—	41.5	67.5	25.75	6.00	12.0	M8 × 12	9.0	8.0	9.0	26270	27820	0.44
QEH30CA	42	10.0	10.0	00	40	10.0	40	70.1	96.1	20.05	0.00	12.0	110 ~ 12	7.0	0.0	7.0	37920	46630	0.75
EGH35SA	48	11.0	18.0	70	50	10.0	_	45.0	75.0	28.50	7.00	12.0	M8 × 12	10.0	8.5	8.5	22660	37380	0.74
EGH35CA	40	11.0	10.0	70	00	10.0	50	78.0	108.0	20.00	7.00	12.0	110 ~ 12	10.0	0.0	0.0	33350	64840	1.10
QEH35SA	48	11.0	18.0	70	50	10.0	-	51.0	76.0	30.30	6.25	12.0	M8 × 12	10.0	8.5	8.5	36390	36430	0.58
QEH35CA	40	11.0	10.0	70	00	10.0	50	83.0	108.0	21.30	0.20	12.0	110 ~ 12	10.0	0.0	0.0	51180	59280	0.90

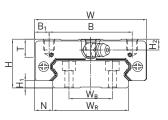
Linear Guideways

Appendix

EGW/QEW

Series Size	Instal dimen	lation sions [r	nm]	Dimen [mm]	isions o	f the blo	ock											Load ra [N]	atings	Mass [kg]
	H	H ₁	Ν	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	М	T	T ₁	H ₂	H ₃	C _{dyn}	C ₀	
EGW15SC	24	4.5	18.5	52	41	5.5	_	23.1	40.1	14.80	3.50	5.7	M5	5.0	7	5.5	6.0	5350	9400	0.12
EGW15CC	24	4.0	10.0	ĴΖ	41	0.0	26	39.8	56.8	10.15	J.JU	J.7	MU	J.U	1	0.0	0.0	7830	16190	0.21
QEW15SC	24	4.0	18.5	52	41	5.5	-	23.1	40.1	14.80	3.50	5.7	M5	5.0	7	5.5	6.0	8560	8790	0.12
QEW15CC	24	4.0	10.5	JL	41	0.0	26	39.8	56.8	10.15	0.00	J./	110	0.0	1	0.0	0.0	12530	15280	0.21
EGW20SC	28	6.0	19.5	59	49	5.0	-	29.0	50.0	18.75	4.15	12.0	M6	7.0	9	6.0	6.0	7230	12740	0.19
EGW20CC	20	0.0	17.0	57	47	0.0	32	48.1	69.1	12.30	4.10	12.0	110	7.0	'	0.0	0.0	10310	21130	0.32
QEW20SC	28	6.0	19.5	59	49	5.0	-	29.0	50.0	18.75	4.15	12.0	M6	7.0	9	6.0	6.5	11570	12180	0.19
QEW20CC	20	010				0.0	32	48.1	69.1	12.30		12.0		7.10		0.0	0.0	16500	20210	0.31
EGW25SC	33	7.0	25.0	73	60	6.5	-	35.5	59.1	21.90	4.55	12.0	M8	7.5	10	8.0	8.0	11400	19500	0.35
EGW25CC							35	59.0	82.6	16.15								16270	32400	0.59
QEW25SC	33	6.2	25.0	73	60	6.5	-	35.5	60.1	21.90	5.00	12.0	M8	7.5	10	8.0	8.0	18240	18900	0.34
QEW25CC							35	59.0	83.6	16.15								26030	31490	0.58
EGW30SC	42	10.0	31.0	90	72	9.0	-	41.5	69.5	26.75	6.00	12.0	M10	7.0	10	8.0	9.0	16420	28100	0.62
EGW30CC							40	70.1	98.1	21.05								23700	47460	
QEW30SC	42	10.0	31.0	90	72	9.0	-	41.5	67.5	25.75	6.00	12.0	M10	7.0	10	8.0	9.0	26270	27820	0.61
QEW30CC							40	70.1	96.1	20.05								37920	46630	1.03
EGW35SC	48	11.0	33.0	100	82	9.0	-	45.0	75.0	28.50	7.00	12.0	M10	10.0	13	8.5	8.5	22660	37380	
EGW35CC							50	78.0	108.0	20.00								33350	64840	1.40
QEW35SC	48	11.0	33.0	100	82	9.0	-	51.0	76.0	30.30	6.25	12.0	M10	10.0	13	8.5	8.5	36390	36430	0.77
QEW35CC							50	83.0	108.0	21.30		10						51180	59280	1.19



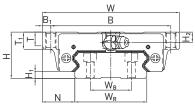

Linear Guideways

Appendix

9.2.3 Dimensions of the WE blocks

WEH

Series/ size		llation 1sions [I	nm]	Dimer [mm]	nsions o	f the blo	ock										Load Ra [N]	atings	Weight [kg]
	H	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Μ×l	T	H ₂	H_3	C _{dyn}	C ₀	
WEH17CA	17	2.5	8.5	50	29	10.5	15	35.0	50.6	-	3.10	4.9	M4 × 5	6.0	4.0	3.0	5230	9640	0.12
WEH21CA	21	3.0	8.5	54	31	11.5	19	41.7	59.0	14.68	3.65	12.0	M5 × 6	8.0	4.5	4.2	7210	13700	0.20
WEH27CA	27	4.0	10.0	62	46	8.0	32	51.8	72.8	14.15	3.50	12.0	M6 × 6	10.0	6.0	5.0	12400	21600	0.35
WEH35CA	35	4.0	15.5	100	76	12.0	50	77.6	102.6	18.35	5.25	12.0	M8 × 8	13.0	8.0	6.5	29800	49400	1.10
WEH50CA	50	7.5	20.0	130	100	15.0	65	112.0	140.0	28.05	6.00	12.9	M10 × 15	19.5	12.0	10.5	61520	97000	3.16


Linear Guideways

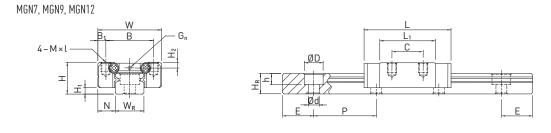
WEW

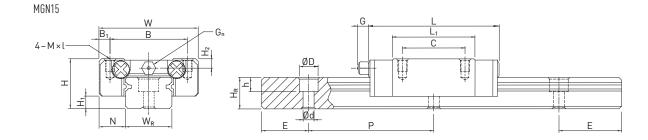
Appendix

_K₁ \oplus \oplus ⊕ ⊕ \oplus Ø \oplus \oplus -6-M G W B L₁ C K₂ li **e** i RRO μ ۲))

Series/ size		llation nsions [mm]	Dimer [mm]	nsions o	f the bl	ock											Load R [N]	atings	Weight [kg]
	H	H ₁	N	W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	T	T ₁	H ₂	H ₃	C _{dyn}	C ₀	
WEW17CC	17	2.5	13.5	60	53	3.5	26	35.0	50.6	-	3.10	4.9	M4	5.3	6	4.0	3.0	5230	9640	0.13
WEW21CC	21	3.0	15.5	68	60	4.0	29	41.7	59.0	9.68	3.65	12.0	M5	7.3	8	4.5	4.2	7210	13700	0.23
WEW27CC	27	4.0	19.0	80	70	5.0	40	51.8	72.8	10.15	3.50	12.0	M6	8.0	10	6.0	5.0	12400	21600	0.43
WEW35CC	35	4.0	25.5	120	107	6.5	60	77.6	102.6	13.35	5.25	12.0	M8	11.2	14	8.0	6.5	29800	49400	1.26
WEW50CC	50	7.5	36.0	162	144	9.0	80	112.0	140.0	20.55	6.00	12.9	M10	14.0	18	12.0	10.5	61520	97000	3.71

GW-02-4-EN-1505-MA



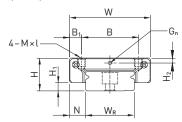

Linear Guideways

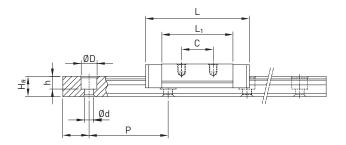
Appendix

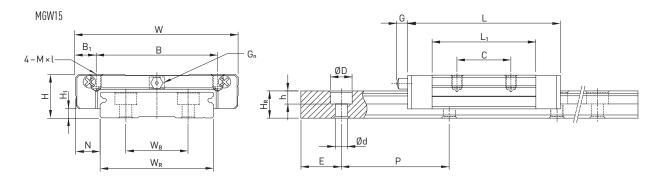
9.2.4 Dimensions of the MG blocks

MGN

Series Size	Installa [mm]	tion dime	nsions	Dimensi [mm]	ons of the	block								Load ra [N]	tings	Mass [kg]
	H	H ₁	N	W	В	B ₁	C	L ₁	L	G	Gn	M×l	H ₂	C _{dyn}	C ₀	
MGN07C	8	1.5	5.0	17	12	2.5	8	13.5	22.5		Ø 1.2	M2 × 2.5	1.5	980	1240	0.01
MGN07H	0	1.0	0.0	17	IZ	2.0	13	21.8	30.8	-	Ø 1.Z	I¶Z × 2.0	1.0	1370	1960	0.02
MGN09C	10	2.0	5.5	20	15	2.5	10	18.9	28.9		Ø1.4	M3 × 3	1.8	1860	2550	0.02
MGN09H	IU	2.0	0.0	20	10	2.0	16	29.9	39.9	_	Ø 1.4	M0×0	1.0	2550	4020	0.03
MGN12C	13	3.0	7.5	27	20	3.5	15	21.7	34.7		Ø 2	M3 × 3.5	25	2840	3920	0.03
MGN12H	10	J.U	7.0	21	20	5.0	20	32.4	45.4	_	ØΖ	M0 × 0.0	2.0	3720	5880	0.05
MGN15C	16	4.0	8.5	32	25	3.5	20	26.7	42.1	4.5	M3	M3 × 4	3.0	4610	5590	0.06
MGN15H	10	4.0	0.0	32	20	5.5	25	43.4	58.8	4.0	MD	1™13 × 4	3.0	6370	9110	0.09


Linear Guideways

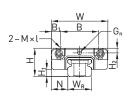


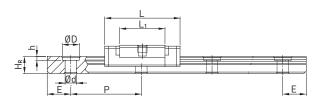

Appendix

MGW

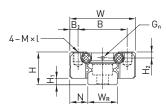
MGW7, MGW9, MGW12

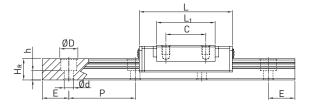
Series Size	Installa [mm]	ation dime	nsions	Dimensi [mm]	ons of the	block								Load ra [N]	tings	Mass [kg]
	H	H ₁	N	W	В	B ₁	С	L ₁	L	G	G _n	M×l	H ₂	C _{dyn}	C ₀	
MGW07C	9	1.9	5.5	25	19	3.0	10	21.0	31.2		Ø1.2	M3 × 3	1.85	1370	2060	0.02
MGW07H	9	1.9	0.0	20	19	3.0	19	30.8	41.0	-	Ø1.Z	140 × 0	1.00	1770	3140	0.03
MGW09C	12	2.9	6.0	30	21	4.5	12	27.5	39.3		Ø1.4	M3 × 3	2.40	2750	4120	0.04
MGW09H	ΙZ	2.9	0.0	30	23	3.5	24	38.5	50.7	-	Ø1.4	140 × 0	2.40	3430	5890	0.06
MGW12C	14	3.4	8.0	40	28	6.0	15	31.3	46.1		Ø2	M3 × 3.6	2.80	3920	5590	0.07
MGW12H	14	5.4	0.0	40	20	0.0	28	45.6	60.4	_	ŴΖ	1º13 × 3.0	2.00	5100	8240	0.10
MGW15C	16	3.4	9.0	60	45	7.5	20	38.0	54.8	5.2	M3	M4 × 4.2	3 20	6770	9220	0.14
MGW15H	10	5.4	9.0	00	40	7.5	35	57.0	73.8	J.Z	MD	14 × 4.∠	3.20	8930	13380	0.22


Linear Guideways


Appendix

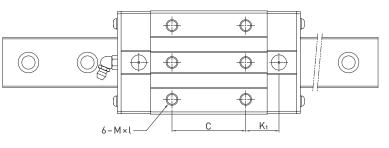
9.2.5 Dimensions of the PM blocks

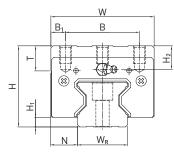

PMN

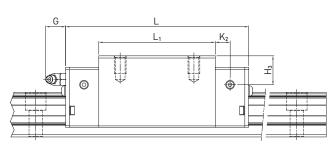

PMN05

PMN09, PMN12

Series Size	Installat [mm]	tion dime	nsions	Dimens [mm]	ions of the	block							Load rat [N]	tings	Mass [kg]
	H	H ₁	N	W	В	B ₁	C	L ₁	L	G _n	M×l	H ₂	C _{dyn}	Co	
PMN05C	1	1 5	3.5	12	8	2.0		9.6	16	Ø0.8	M2 × 1.5	1.0	540	840	0.01
PMN05H	6	1.5	5.5	ΙZ	0	2.0	_	12.6	19	ØU.0	MZ × 1.0	1.0	667	1089	0.01
PMN09C	10	2.2	5.5	20	15	2.5	10	19.4	30	Ø1.4	M3 × 8	1.8	2010	2840	0.01
PMN12C	13	3.0	7.5	27	20	3.5	15	22.0	35	Ø2	M3 × 3.5	2.5	2840	3920	0.03

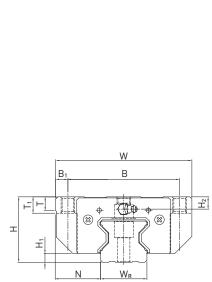

Linear Guideways

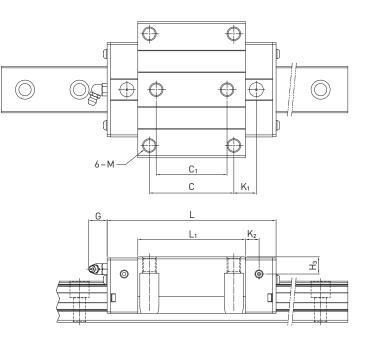



Appendix

9.2.6 Dimensions of the RG/QR blocks

RGH/QRH


Series/ size	Instal dimen	lation sions [n	nm]	Dimer [mm]	isions o	f the blo	ock										Load Ra [N]	tings	Weight [kg]
	H	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×l	T	H ₂	H ₃	C _{dyn}	C ₀	
RGH15CA	28	4.0	9.5	34	26	4.0	26	45.0	68.0	13.40	4.70	5.3	M4 × 8	6.0	7.6	10.1	11300	24000	0.20
RGH20CA	34	5.0	12.0	44	32	6.0	36	57.5	86.0	15.80	6.00	5.3	ME 0	8.0	8.3	8.3	21300	46700	0.40
RGH20HA	34	0.0	12.0	44	32	0.0	50	77.5	106.0	18.80	0.00	0.0	M5 × 8	0.0	0.3	0.3	26900	63000	0.53
RGH25CA	/0	ГГ	10 F	/0	٩Ľ	. Γ	35	64.5	97.9	20.75	7.05	12.0	M/ 0	0 5	10.2	10.0	27700	57100	0.61
RGH25HA	40	5.5	12.5	48	35	6.5	50	81.0	114.4	21.50	7.25	12.0	M6 × 8	9.5	10.2	10.0	33900	73400	0.75
QRH25CA	(0		10 F	(0	95		35	66.0	97.9	20.75	7 05	10.0	M/ 0	0.5	10.0	10.0	38500	54400	0.60
QRH25HA	40	5.5	12.5	48	35	6.5	50	81.0	112.9	21.50	7.25	12.0	M6 × 8	9.5	10.2	10.0	44700	65300	0.74
RGH30CA	/5	(0	1/0	/0	(0	10.0	40	71.0	109.8	23.50	0.00	10.0	M0 10	0.5	0.5	10.0	39100	82100	0.90
RGH30HA	45	6.0	16.0	60	40	10.0	60	93.0	131.8	24.50	8.00	12.0	M8 × 10	9.5	9.5	10.3	48100	105000	1.16
QRH30CA	/ Г	(0	1/0	/0	/0	10.0	40	71.0	109.8	23.50	0.00	12.0	M0 10	0 5	0 Г	10.0	51500	73000	0.89
QRH30HA	45	6.0	16.0	60	40	10.0	60	93.0	131.8	24.50	8.00	12.0	M8 × 10	9.5	9.5	10.3	64700	95800	1.15
RGH35CA	гг	/ F	10.0	70	ΓO	10.0	50	79.0	124.0	22.50	10.00	12.0	M0 12	12.0	1/0	10 /	57900	105200	1.57
RGH35HA	55	6.5	18.0	70	50	10.0	72	106.5	151.5	25.25	10.00	12.0	M8 × 12	12.0	16.0	19.6	73100	142000	2.06
QRH35CA	55	6.5	18.0	70	50	10.0	50	79.0	124.0	22.50	10.00	12.0	M8 × 12	12.0	16.0	19.6	77000	94700	1.56
QRH35HA	00	0.0	10.0	/0	00	10.0	72	106.5	151.5	25.25	10.00	12.0	1™10 × 12	12.0	10.0	17.0	95700	126300	2.04
RGH45CA	70	8.0	20.5	86	60	13.0	60	106.0	153.2	31.00	10.00	12.9	M10 × 17	16.0	20.0	24.0	92600	178800	3.18
RGH45HA	70	0.0	20.0	00	00	13.0	80	139.8	187.0	37.90	10.00	12.9	№110 × 17	10.0	20.0	24.0	116000	230900	4.13
QRH45CA	70	8.0	20.5	86	60	13.0	60	106.0	153.2	31.00	10.00	12.9	M10 × 17	14 0	20.0	24.0	123200	156400	3.16
QRH45HA	70	0.0	20.5	00	00	13.0	80	139.8	187.0	37.90	10.00	12.9	№11U × 1/	16.0	20.0	24.0	150800	208600	4.10
RGH55CA	80	10.0	23.5	100	75	12.5	75	125.5	183.7	37.75	12.50	12.9	M12 × 18	17.5	22.0	27.5	130500	252000	4.89
RGH55HA	00	10.0	20.0	100	70	12.0	95	173.8	232.0	51.90	12.00	12.9	1™11∠ × 10	17.5	22.0	27.0	167800	348000	6.68
RGH65CA	90	12.0	91 E	19/	7/	25.0	70	160.0	232.0	60.80	15.00	12.0	M16 × 20	2E 0	15.0	15.0	213000	411600	8.89
RGH65HA	70	12.0	31.5	126	76	20.0	120	223.0	295.0	67.30	15.80	12.9	1™110 × 20	25.0	15.0	10.0	275300	572700	12.13



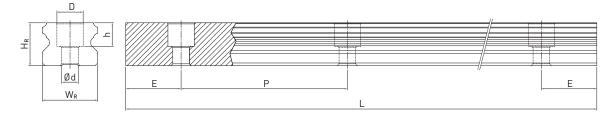
Appendix

Linear Guideways

RGW/QRW

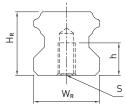
Series Size		lation Isions [mm]	Dimer [mm]	nsions	of the b	lock												Load Ra [N]	tings	Weight [kg]
	H	H ₁	N	W	В	B ₁	C	C ₁	L ₁	L	K ₁	K ₂	G	М	T	T ₁	H ₂	H ₃	C _{dyn}	C ₀	
RGW15CC	24	4.0	16.0	47	38	4.5	30	26	45.0	68.0	11.40	4.70	5.3	M5	6.0	7	3.60	6.1	11300	24000	0.22
RGW20CC	30	5.0	21.5	63	53	5.0	40	35	57.5	86.0	13.80	6.00	5.3	M6	8.0	10	4.30	4.3	21300	46700	0.47
RGW20HC	30	0.0	21.0	00	00	J.U	40	20	77.5	106.0	23.80	0.00	0.0	1*10	0.0	10	4.30	4.5	26900	63000	0.63
RGW25CC	36	5.5	20 E	70	57	/ E	/ E	40	64.5	97.9	15.75	7.95	12.0	M8	9.5	10	4.20	6.0	27700	57100	0.72
RGW25HC	30	0.0	23.5	/ U	57	6.5	45	40	81.0	114.4	24.00	7.20	12.0	I*10	9.0	IU	6.20	0.0	33900	73400	0.91
QRW25CC	36	5.5	23.5	70	57	6.5	45	40	66.0	97.9	15.75	7.25	12.0	M8	9.5	10	4.20	6.0	38500	54400	0.71
QRW25HC	30	0.0	23.0	/ U	57	0.0	40	40	81.0	112.9	24.00	7.20	12.0	I*10	9.0	IU	6.20	0.0	44700	65300	0.90
RGW30CC	42	6.0	31.0	90	72	9.0	52	44	71.0	109.8	17.50	8.00	12.0	M10	9.5	10	6.50	7.3	39100	82100	1.16
RGW30HC	42	0.0	31.0	90	12	9.0	52	44	93.0	131.8	28.50	0.00	12.0	I™IIU	9.0	IU	0.00	7.5	48100	105000	1.52
QRW30CC	42	6.0	31.0	90	72	9.0	52	44	71.0	109.8	17.50	8.00	12.0	M10	9.5	10	6.50	7.3	51500	73000	1.15
QRW30HC	42	0.0	31.0	90	12	9.0	97	44	93.0	131.8	28.50	0.00	12.0	IIIU	7.0	10	0.00	7.5	64700	95800	1.51
RGW35CC	48	6.5	33.0	100	82	9.0	62	52	79.0	124.0	16.50	10.00	12.0	M10	12.0	13	0.00	12.6	57900	105200	1.75
RGW35HC	40	0.0	JJ.U	100	02	7.0	UZ	JZ	106.5	151.5	30.25	10.00	12.0	ITIU	12.0	IJ	7.00	12.0	73100	142000	2.40
QRW35CC	48	6.5	33.0	100	82	9.0	62	52	79.0	124.0	16.50	10.00	12.0	M10	12.0	13	0 00	12.6	77000	94700	1.74
QRW35HC	40	0.0	JJ.U	100	02	7.0	UZ	JZ	106.5	151.5	30.25	10.00	12.0	ITIU	12.0	IJ	7.00	12.0	95700	126300	2.38
RGW45CC	60	8.0	37.5	120	100	10.0	80	60	106.0	153.2	21.00	10.00	12.9	M12	14.0	15	10.00	1/ 0	92600	178800	3.43
RGW45HC	00	0.0	J7.J	120	100	10.0	00	00	139.8	187.0	37.90	10.00	12.7	IMIZ	14.0	10	10.00	14.0	116000	230900	4.57
QRW45CC	60	8.0	37.5	120	100	10.0	80	60	106.0	153.2	21.00	10.00	12.9	M12	14.0	15	10.00	1/ 0	123200	156400	3.41
QRW45HC	00	0.0	57.5	120	100	10.0	00	00	139.8	187.0	37.90	10.00	12.7	MIL	14.0	10	10.00	14.0	150800	208600	4.54
RGW55CC	70	10.0	43.5	140	116	12.0	95	70	125.5	183.7	27.75	12.50	120	M14	16.0	17	12.00	17 5	130500	252000	5.43
RGW55HC	70	10.0	45.5	140	110	12.0	70	70	173.8	232.0	51.90	12.00	12.7	14114	10.0	17	12.00	17.5	167800	348000	7.61
RGW65CC	90	12.0	53.5	170	142	14.0	110	82	160.0	232.0	40.80	15.80	12.9	M16	22.0	23	15.00	15.0	213000	411600	11.63
RGW65HC	70	12.0	00.0	170	142	14.0	110	UΖ	223.0	295.0	72.30	10.00	12.7	MIIU	22.0	ZJ	10.00	10.0	275300	572700	16.58

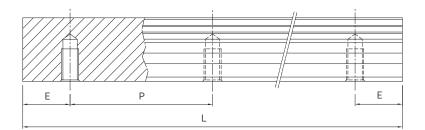
Linear Guideways


Appendix

9.3 Technical data for rails

9.3.1 Dimensions of the HG rails


The HG rails are used for both the HG and QH blocks.


HGR_R

Series	Screws	Dimens	sions of tl	he rail (m	ım]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
Size	for rail [mm]	W _R	H _R	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
HGR15R	M4 × 16	15	15.0	7.5	5.3	4.5	60	4000	3900	6	54	1.45
HGR20R	M5 × 16	20	17.5	9.5	8.5	6.0	60	4000	3900	7	53	2.21
HGR25R	M6 × 20	23	22.0	11.0	9.0	7.0	60	4000	3900	8	52	3.21
HGR30R	M8 × 25	28	26.0	14.0	12.0	9.0	80	4000	3920	9	71	4.47
HGR35R	M8 × 25	34	29.0	14.0	12.0	9.0	80	4000	3920	9	71	6.30
HGR45R	M12 × 35	45	38.0	20.0	17.0	14.0	105	4000	3885	12	93	10.41
HGR55R	M14 × 45	53	44.0	23.0	20.0	16.0	120	4000	3840	14	106	15.08
HGR65R	M16 × 50	63	53.0	26.0	22.0	18.0	150	4000	3750	15	135	21.18

HGR_T

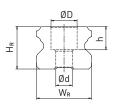
Series	Dimens	ions of the	rail [mm]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
Size	W _R	H _R	S	h	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
HGR15T	15	15.0	M5	8	60	4000	3900	6	54	1.48
HGR20T	20	17.5	M6	10	60	4000	3900	7	53	2.29
HGR25T	23	22.0	M6	12	60	4000	3900	8	52	3.35
HGR30T	28	26.0	M8	15	80	4000	3920	9	71	4.67
HGR35T	34	29.0	M8	17	80	4000	3920	9	71	6.51
HGR45T	45	38.0	M12	24	105	4000	3885	12	93	10.87
HGR55T	53	44.0	M14	24	120	4000	3840	14	106	15.67
HGR65T	63	53.0	M20	30	150	4000	3750	15	135	21.73

Note:

1. The tolerance for E is +0.5 to -1 mm for standard rails and 0 to -0.3 mm for joint connections.

2. If the $E_{1/2}$ dimensions are not indicated, the maximum possible amount of fixing holes will be determined with regard to the $E_{1/2}$ min.

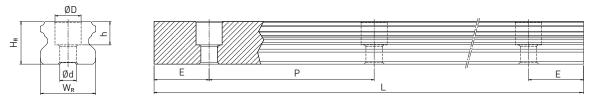
3. The rails are shortened to the required length. If the $E_{1/2}$ dimensions are not indicated, these will be carried out symmetrically.


Linear Guideways

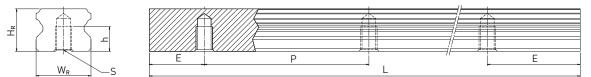
Appendix

9.3.2 Dimensions of the EG rails

The EG rails are used for both the EG and QE blocks.


EGR_R

	(//////		//		
			//		
	¬{///////				
		<u></u>		<u></u>	
I E İ	Р	İ	11	i i	F
	· · ·			h	
-		L			


Series	Screws	Dimens	sions of t	he rail [m	ım]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
Size	for rail [mm]	W _R	H _R	D	h	d	Р	[mm]	$\mathbf{E}_1 = \mathbf{E}_2 [\mathbf{mm}]$	[mm]	[mm]	[kg/m]
EGR15R	M3 × 16	15	12.5	6.0	4.5	3.5	60	4000	3900	6	54	1.25
EGR20R	M5 × 16	20	15.5	9.5	8.5	6.0	60	4000	3900	7	53	2.08
EGR25R	M6 × 20	23	18.0	11.0	9.0	7.0	60	4000	3900	8	52	2.67
EGR30R	M6 × 25	28	23.0	11.0	9.0	7.0	80	4000	3920	9	71	4.35
EGR35R	M8 × 25	34	27.5	14.0	12.0	9.0	80	4000	3920	9	71	6.14

EGR_U

Series	Screws	Dimens	sions of tl	ne rail (m	im]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
Size	for rail [mm]	W _R	H _R	D	h	d	Р	[mm]	$\mathbf{E}_1 = \mathbf{E}_2 [\mathbf{mm}]$	[mm]	[mm]	[kg/m]
EGR15U	M4 × 16	15	12.5	7.5	5.3	4.5	60	4000	3900	6	54	1.23
EGR30U	M8 × 25	28	23.0	14.0	12.0	9.0	80	4000	3920	9	71	4.23

EGR_T

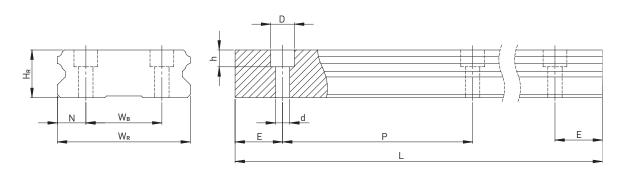
Series	Dimens	sions of the	rail [mm]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
Size	W _R	H _R	S	h	Р	[mm]	$\mathbf{E}_1 = \mathbf{E}_2 [\mathbf{mm}]$	[mm]	[mm]	[kg/m]
EGR15T	15	12.5	M5	7	60	4000	3900	6	54	1.26
EGR20T	20	15.5	M6	9	60	4000	3900	7	53	2.15
EGR25T	23	18.0	M6	10	60	4000	3900	8	52	2.79
EGR30T	28	23.0	M8	14	80	4000	3920	9	71	4.42
EGR35T	34	27.5	M8	17	80	4000	3920	9	71	6.34

Note:

1. The tolerance for E is +0.5 to -1 mm for standard rails and 0 to -0.3 mm for joint connections.

2. If the E1/2 dimensions are not indicated, the maximum possible amount of fixing holes will be determined with regard to the E1/2 min.

3. The rails are shortened to the required length. If the E1/2 dimensions are not indicated, these will be carried out symmetrically.


Linear Guideways

Appendix

9.3.3 Dimensions of the WE rails

WER_R

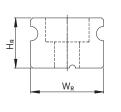
Series/	Assembly screw	Dimens	ions of th	e rail [mm]					Max. length	E _{1/2} min	E _{1/2} max	Weight
size	for rail [mm]	W _R	W _B	H _R	D	h	d	Р	[mm]	[mm]	[mm]	[kg/m]
WER17R	M4 × 12	33	18	9.3	7.5	5.3	4.5	40	4000	6	34	2.2
WER21R	M4 × 12	37	22	11.0	7.5	5.3	4.5	50	4000	6	44	3.0
WER27R	M4 × 16	42	24	15.0	7.5	5.3	4.5	60	4000	6	54	4.7
WER35R	M6 × 20	69	40	19.0	11.0	9.0	7.0	80	4000	8	72	9.7
WER50R	M8 × 25	90	60	24.0	14.0	12.0	9.0	80	4000	9	71	14.6

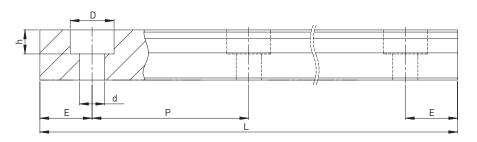
Note:

1. The tolerance for E is +0.5 to -1 mm for standard rails and 0 to -0.3 mm for joint connections.

2. If the $E_{1/2}$ dimensions are not indicated, the maximum possible amount of fixing holes will be determined with regard to the $E_{1/2}$ min.

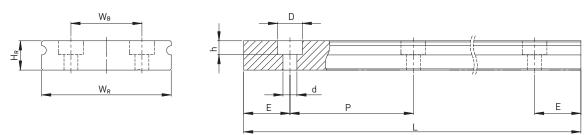
3. The rails are shortened to the required length. If the E_{1/2} dimensions are not indicated, these will be carried out symmetrically.




Linear Guideways

Appendix

9.3.4 Dimensions of the MG rails


MGN_R

Series	Screws	Dimens	sions of t	he rail [m	m]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
Size	for rails [mm]	W _R	H _R	D	h	d	Р	[mm]	$\mathbf{E}_1 = \mathbf{E}_2 [\mathbf{mm}]$	[mm]	[mm]	[kg/m]
MGNR07R	M2 × 6	7	4.8	4.2	2.3	2.4	15	600	585	5	10	0.22
MGNR09R	M3 × 8	9	6.5	6.0	3.5	3.5	20	1200	1180	5	15	0.38
MGNR12R	M3 × 8	12	8.0	6.0	4.5	3.5	25	2000	1975	5	20	0.65
MGNR15R	M3 × 10	15	10.0	6.0	4.5	3.5	40	2000	1960	6	34	1.06

MGW_R

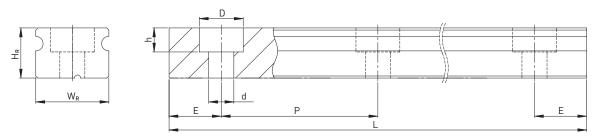
	Screws for rail [mm]	Dimensions of the rail [mm]							Max. length	Max. length	E _{1/2} min	E _{1/2} max	Mass
		W _R	H _R	W _B	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	[kg/m]
MGWR07R	M3 × 6	14	5.2	-	6	3.2	3.5	30	600	570	6	24	0.51
MGWR09R	M3 × 8	18	7.0	-	6	4.5	3.5	30	1200	1170	6	24	0.91
MGWR12R	M4 × 8	24	8.5	-	8	4.5	4.5	40	2000	1960	8	32	1.49
MGWR15R	M4 × 10	42	9.5	23	8	4.5	4.5	40	2000	1960	8	32	2.86

Note:

1. The tolerance for E is +0.5 to -1 mm for standard rails and 0 to -0.3 mm for joint connections.

2. If the $E_{1/2}$ dimensions are not indicated, the maximum possible amount of fixing holes will be determined with regard to the $E_{1/2}$ min.

3. The rails are shortened to the required length. If the E_{1/2} dimensions are not indicated, these will be carried out symmetrically.


Linear Guideways

Appendix

9.3.5 Dimensions of the PM rail

PMN_R

	Screws for rail [mm]	Dimens	sions of tl	he rail [m	im]			Max. length	Max. length	E _{1/2} min	E _{1/2} max	mass [kg/m]
		W _R	H _R	D	h	d	Р	[mm]	$E_1 = E_2 [mm]$	[mm]	[mm]	
PMNR05R	M2 × 6	5	3.6	3.6	0.8	2.4	15.0	250	240	4	11	0.15
PMNR09R	M3 × 8	9	6.5	6.0	3.5	3.5	20.0	1200	1180	5	15	0.38
PMNR12R	M3 × 8	12	8.0	6.0	4.5	3.5	25.0	2000	1975	5	20	0.65

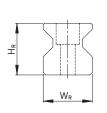
The special screws needed for mounting rail PMN05R are delivered with the rail order.

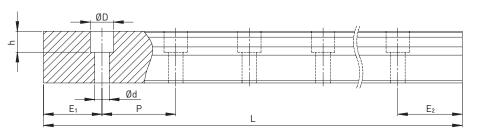
Note:

1. The tolerance for E is +0.5 to -1 mm for standard rails and 0 to -0.3 mm for joint connections.

2. If the E_{1/2} dimensions are not indicated, the maximum possible amount of fixing holes will be determined with regard to the E_{1/2} min.

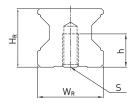
3. The rails are shortened to the required length. If the $E_{1/2}$ dimensions are not indicated, these will be carried out symmetrically.

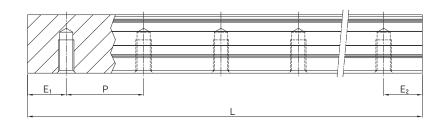

Linear Guideways


Appendix

9.3.6 Dimensions of the RG rails

The RG rails are used for both the RG and QR blocks.


RGR_R



Series/ size	Assembly screw for rail [mm]	Dimen	sions of r	ail [mm]				Max. length [mm]	Max. length	E _{1/2} min	E _{1/2} max [mm]	Weight [kg/m]
		W _R	H _R	D	h	d	Р		$E_1 = E_2$	[mm]		
RGR15R	M4 × 16	15	16.5	7.5	5.7	4.5	30.0	4000	3960.0	6	24.0	1.70
RGR20R	M5 × 20	20	21.0	9.5	8.5	6.0	30.0	4000	3960.0	7	23.0	2.66
RGR25R	M6 × 20	23	23.6	11.0	9.0	7.0	30.0	4000	3960.0	8	22.0	3.08
RGR30R	M8 × 25	28	28.0	14.0	12.0	9.0	40.0	4000	3920.0	9	31.0	4.41
RGR35R	M8 × 25	34	30.2	14.0	12.0	9.0	40.0	4000	3920.0	9	31.0	6.06
RGR45R	M12 × 35	45	38.0	20.0	17.0	14.0	52.5	4000	3937.5	12	40.5	9.97
RGR55R	M14 × 45	53	44.0	23.0	20.0	16.0	60.0	4000	3900.0	14	46.0	13.98
RGR65R	M16 × 50	63	53.0	26.0	22.0	18.0	75.0	4000	3900.0	15	60.0	20.22

RGR_T

Series/ size	Dimens	sions of rail	[mm]			Max. length [mm]	Max. length	E _{1/2} min	E _{1/2} max	Weight
	W _R	H _R	S	h	Р		$E_1 = E_2$	[mm]	[mm]	[kg/m]
RGR15T	15	16.5	M5	8	30.0	4000	3960.0	6	24.0	1.86
RGR20T	20	21.0	Mó	10	30.0	4000	3960.0	7	23.0	2.76
RGR25T	23	23.6	Mó	12	30.0	4000	3960.0	8	22.0	3.36
RGR30T	28	28.0	M8	15	40.0	4000	3920.0	9	31.0	4.82
RGR35T	34	30.2	M8	17	40.0	4000	3920.0	9	31.0	6.48
RGR45T	45	38.0	M12	24	52.5	4000	3937.5	12	40.5	10.83
RGR55T	53	44.0	M14	24	60.0	4000	3900.0	14	46.0	15.15
RGR65T	63	53.0	M20	30	75.0	4000	3900.0	15	60.0	21.24

Note:

1. The tolerance for E is +0.5 to -1 mm for standard rails and 0 to -0.3 mm for joint connections.

2. If the E_{1/2} dimensions are not indicated, the maximum possible amount of fixing holes will be determined with regard to the E_{1/2} min.

3. The rails are shortened to the required length. If the E_{1/2} dimensions are not indicated, these will be carried out symmetrically.

Linear Guideways

Notes

Linear Guideways

Linear Axes with Ballscrews

Ballscrews

Linear Actuators

Linear Motor Systems

Ball Bearings

Linear Motor Components

Rotary Tables

Drives

Germany HIWIN GmbH Brücklesbünd 2 D-77654 Offenburg Phone +49 (0) 7 81 9 32 78 - 0 Fax +49 (0) 7 81 9 32 78 - 90 info@hiwin.de www.hiwin.de

Taiwan Headquarters HIWIN Technologies Corp. No. 7, Jingke Road Nantun District Taichung Precision Machinery Park Taichung 40852, Taiwan Phone +886-4-2359-4510 Fax +886-4-2359-4510 business@hiwin.com.tw www.hiwin.com.tw

Taiwan Headquarters HIWIN Mikrosystem Corp. No. 6, Jingke Central Road Nantun District Taichung Precision Machinery Park Taichung 40852, Taiwan Phone +886-4-2355-0110 Fax +886-4-2355-0123 business@hiwinmikro.tw www.hiwinmikro.tw

Italy HIWIN Srl Via Pitagora 4 I-20861 Brugherio (MB) Phone +39 039 287 61 68 Fax +39 039 287 43 73 info@hiwin.it www.hiwin.it

Poland HIWIN GmbH ul. Putawska 405a PL-02-801 Warszawa Phone +48 (0) 22 544 07 07 Fax +48 (0) 22 544 07 08 info@hiwin.pl www.hiwin.pl

Czechia HIWIN s.r.o. Medkova 888/11 CZ-62700 BRNO Phone +42 05 48 528 238 Fax +42 05 48 220 223 info@hiwin.cz www.hiwin.cz

Slovakia HIWIN s.r.o., o.z.z.o. Mládežnicka 2101 SK-01701 Považská Bystrica Phone +421 424 43 47 77 Fax +421 424 26 23 06 info@hiwin.sk www.hiwin.sk

Switzerland HIWIN Schweiz GmbH Eichwiesstrasse 20 CH-8645 Jona Phone +41 (0) 55 225 00 25 Fax +41 (0) 55 225 00 20 info@hiwin.ch www.hiwin.ch

France HWIN France s.a.r.l. 20 Rue du Vieux Bourg F-61370 Echauffour Phone +33 (2) 33 34 11 15 Fax +33 (2) 33 34 73 79 info@hiwin.fr www.hiwin.fr

Austria HIWIN GmbH info@hiwin.at www.hiwin.at

Hungary HIWIN GmbH info@hiwin.hu www.hiwin.hu

Japan HIWIN Corp. mail@hiwin.co.jp www.hiwin.co.jp

USA HIWIN Corp. info@hiwin.com www.hiwin.com

HIWIN Corp. www.hiwin.cn

Korea HIWIN Corp. www.hiwin.kr

Singapore HIWIN Corp. www.hiwin.sg